Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swati S. Jain is active.

Publication


Featured researches published by Swati S. Jain.


Journal of Biological Chemistry | 2009

Greater Transport Efficiencies of the Membrane Fatty Acid Transporters FAT/CD36 and FATP4 Compared with FABPpm and FATP1 and Differential Effects on Fatty Acid Esterification and Oxidation in Rat Skeletal Muscle

James G. Nickerson; Hakam Alkhateeb; Carley R. Benton; James Lally; Jennifer Nickerson; Xiao-Xia Han; Meredith H. Wilson; Swati S. Jain; Laelie A. Snook; Jan F. C. Glatz; Adrian Chabowski; Joost J. F. P. Luiken; Arend Bonen

In selected mammalian tissues, long chain fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) are co-expressed. There is controversy as to whether they all function as membrane-bound transporters and whether they channel fatty acids to oxidation and/or esterification. Among skeletal muscles, the protein expression of FABPpm, FAT/CD36, and FATP4, but not FATP1, correlated highly with the capacities for oxidative metabolism (r ≥ 0.94), fatty acid oxidation (r ≥ 0.88), and triacylglycerol esterification (r ≥ 0.87). We overexpressed independently FABPpm, FAT/CD36, FATP1, and FATP4, within a normal physiologic range, in rat skeletal muscle, to determine the effects on fatty acid transport and metabolism. Independent overexpression of each fatty acid transporter occurred without altering either the expression or plasmalemmal content of other fatty acid transporters. All transporters increased fatty acid transport, but FAT/CD36 and FATP4 were 2.3- and 1.7-fold more effective than FABPpm and FATP1, respectively. Fatty acid transporters failed to alter the rates of fatty acid esterification into triacylglycerols. In contrast, all transporters increased the rates of long chain fatty acid oxidation, but the effects of FABPpm and FAT/CD36 were 3-fold greater than for FATP1 and FATP4. Thus, fatty acid transporters exhibit different capacities for fatty acid transport and metabolism. In vivo, FAT/CD36 and FATP4 are the most effective fatty acid transporters, whereas FABPpm and FAT/CD36 are key for stimulating fatty acid oxidation.


Biochemical Journal | 2011

FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation.

Brennan K. Smith; Swati S. Jain; Stéphanie Rimbaud; Aaron Dam; Joe Quadrilatero; Renée Ventura-Clapier; Arend Bonen; Graham P. Holloway

FAT/CD36 (fatty acid translocase/Cluster of Differentiation 36), a plasma membrane fatty-acid transport protein, has been found on mitochondrial membranes; however, it remains unclear where FAT/CD36 resides on this organelle or its functional role within mitochondria. In the present study, we demonstrate, using several different approaches, that in skeletal muscle FAT/CD36 resides on the OMM (outer mitochondrial membrane). To determine the functional role of mitochondrial FAT/CD36 in this tissue, we determined oxygen consumption rates in permeabilized muscle fibres in WT (wild-type) and FAT/CD36-KO (knockout) mice using a variety of substrates. Despite comparable muscle mitochondrial content, as assessed by unaltered mtDNA (mitochondrial DNA), citrate synthase, β-hydroxyacyl-CoA dehydrogenase, cytochrome c oxidase complex IV and respiratory capacities [maximal OXPHOS (oxidative phosphorylation) respiration] in WT and KO mice, palmitate-supported respiration was 34% lower in KO animals. In contrast, palmitoyl-CoA-supported respiration was unchanged. These results indicate that FAT/CD36 is key for palmitate-supported respiration. Therefore we propose a working model of mitochondrial fatty-acid transport, in which FAT/CD36 is positioned on the OMM, upstream of long-chain acyl-CoA synthetase, thereby contributing to the regulation of mitochondrial fatty-acid transport. We further support this model by providing evidence that FAT/CD36 is not located in mitochondrial contact sites, and therefore does not directly interact with carnitine palmitoyltransferase-I as original proposed.


FEBS Letters | 2009

Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6

Swati S. Jain; Adrian Chabowski; Laelie A. Snook; Robert W. Schwenk; Jan F. C. Glatz; Joost J. F. P. Luiken; Arend Bonen

Insulin and muscle contraction increase fatty acid transport into muscle by inducing the translocation of FAT/CD36. We examined (a) whether these effects are additive, and (b) whether other fatty acid transporters (FABPpm, FATP1, FATP4, and FATP6) are also induced to translocate. Insulin and muscle contraction increased glucose transport and plasmalemmal GLUT4 independently and additively (positive control). Palmitate transport was also stimulated independently and additively by insulin and by muscle contraction. Insulin and muscle contraction increased plasmalemmal FAT/CD36, FABPpm, FATP1, and FATP4, but not FATP6. Only FAT/CD36 and FATP1 were stimulated in an additive manner by insulin and by muscle contraction.


Journal of Biological Chemistry | 2012

In Vivo, Fatty Acid Translocase (CD36) Critically Regulates Skeletal Muscle Fuel Selection, Exercise Performance, and Training-induced Adaptation of Fatty Acid Oxidation

Jay T. McFarlan; Yuko Yoshida; Swati S. Jain; Xioa-Xia Han; Laelie A. Snook; James Lally; Brennan K. Smith; Jan F.C. Glatz; Joost J. F. P. Luiken; Ryan A. Sayer; A. Russell Tupling; Adrian Chabowski; Graham P. Holloway; Arend Bonen

Background: CD36-mediated lipid transport may regulate muscle fuel selection and adaptation. Results: CD36 ablation impaired fatty acid oxidation and prevented its exercise training-induced up-regulation. Without altering mitochondrial content, CD36 overexpression mimicked exercise training effects on fatty acid oxidation. Conclusion: CD36 contributes to regulating fatty acid oxidation and adaptation in a mitochondrion-independent manner. Significance: This work identified another mechanism regulating muscle fatty acid oxidation. For ∼40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (−21%) and oxidation (−25%), intramuscular lipids (less than or equal to −31%), and hepatic glycogen (−20%); but muscle glycogen, VO2max, and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO2max) CD36-KO mice, fatty acid transport (−41%), oxidation (−37%), and exercise duration (−44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27–55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84–90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle

Graham P. Holloway; Swati S. Jain; Veronic Bezaire; Xiao Xia Han; Jan F. C. Glatz; Joost J. F. P. Luiken; Mary-Ellen Harper; Arend Bonen

The plasma membrane fatty acid transport protein FAT/CD36 is also present at the mitochondria, where it may contribute to the regulation of fatty acid oxidation, although this has been challenged. Therefore, we have compared enzyme activities and rates of mitochondrial palmitate oxidation in muscles of wild-type (WT) and FAT/CD36 knockout (KO) mice, at rest and after muscle contraction. In WT and KO mice, carnitine palmitoyltransferase-I, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activities did not differ in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of WT and FAT/CD36 KO mice. Basal palmitate oxidation rates were lower (P < 0.05) in KO mice (SS -18%; IMF -13%). Muscle contraction increased fatty acid oxidation (+18%) and mitochondrial FAT/CD36 protein (+16%) in WT IMF but not in WT SS, or in either mitochondrial subpopulation in KO mice. This revealed that the difference in IMF mitochondrial fatty acid oxidation between WT and KO mice can be increased approximately 2.5-fold from 13% under basal conditions to 35% during muscle contraction. The FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO), inhibited palmitate transport across the plasma membrane in WT, but not in KO mice. In contrast, SSO bound to mitochondrial membranes and reduced palmitate oxidation rates to a similar extent in both WT and KO mitochondria ( approximately 80%; P < 0.05). In addition, SSO reduced state III respiration with succinate as a substrate, without altering mitochondrial coupling (P/O ratios). Thus, while SSO inhibits FAT/CD36-mediated palmitate transport at the plasma membrane, SSO has undefined effects on mitochondria. Nevertheless, the KO animals reveal that FAT/CD36 contributes to the regulation of mitochondrial fatty acid oxidation, which is especially important for meeting the increased metabolic demands during muscle contraction.


Endocrinology | 2009

A Transgenic Mouse Model to Study Glucose Transporter 4myc Regulation in Skeletal Muscle

Jonathan D. Schertzer; Costin N. Antonescu; Philip J. Bilan; Swati S. Jain; Xudong Huang; Zhi Liu; Arend Bonen; Amira Klip

Skeletal muscle is the major site for dietary glucose disposal, taking up glucose via glucose transporter 4 (GLUT4). Although subcellular fractionation studies demonstrate that insulin increases GLUT4 density in sarcolemma and transverse tubules, fractionation cannot discern GLUT4 vesicle-membrane association from insertion and exofacial exposure. Clonal muscle cultures expressing exofacially tagged GLUT4 have allowed quantification of GLUT4 exposure at the cell surface, its exocytosis, endocytosis, and partner proteins. We hypothesized that transgenic expression of GLUT4myc in skeletal muscles would provide a useful model to investigate GLUT4 biology in vivo. A homozygous mouse colony was generated expressing GLUT4myc driven by the muscle creatine kinase (MCK) promoter. GLUT4 protein levels were about 3-fold higher in hindlimb muscles of MCK-GLUT4myc transgenic mice compared with littermates (P < 0.05). Insulin (12 nm, 30 min) induced a 2.1-fold increase in surface GLUT4myc detected by immunofluorescence of the exofacial myc epitope in nonpermeabilized muscle fiber bundles (P < 0.05). Glucose uptake and surface GLUT4myc levels were 3.5- and 3-fold higher, respectively, in giant membrane vesicles blebbed from hindlimb muscles of insulin-stimulated transgenic mice compared with unstimulated counterparts (P < 0.05). Muscle contraction also elevated both parameters, an effect partially additive to insulins. GLUT4myc immunoprecipitation with anti-myc antibodies avoids interfering with associated intracellular binding proteins. Tether, containing a UBX domain, for GLUT4 coimmunoprecipitated with GLUT4myc and insulin stimulation significantly decreased such association (P < 0.05). MCK-GLUT4myc transgenic mice are thus useful to quantify exofacial GLUT4 exposure at the sarcolemma and GLUT4 binding partners in skeletal muscle, essential elements in the investigation of muscle GLUT4 regulation in physiological and pathological states in vivo.


Diabetes | 2014

High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial derived reactive oxygen species activation of CaMKII

Swati S. Jain; Sabina Paglialunga; C. Vigna; Alison Ludzki; Eric A.F. Herbst; J. S. V. Lally; Patrick Schrauwen; Joris Hoeks; A.R. Tupling; Arend Bonen; Graham P. Holloway

Calcium/calmodulin-dependent protein kinase (CaMK) activation induces mitochondrial biogenesis in response to increasing cytosolic calcium concentrations. Calcium leak from the ryanodine receptor (RyR) is regulated by reactive oxygen species (ROS), which is increased with high-fat feeding. We examined whether ROS-induced CaMKII-mediated signaling induced skeletal muscle mitochondrial biogenesis in selected models of lipid oversupply. In obese Zucker rats and high-fat–fed rodents, in which muscle mitochondrial content was upregulated, CaMKII phosphorylation was increased independent of changes in calcium uptake because sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) protein expression or activity was not altered, implicating altered sarcoplasmic reticulum (SR) calcium leak in the activation of CaMKII. In support of this, we found that high-fat feeding increased mitochondrial ROS emission and S-nitrosylation of the RyR, whereas hydrogen peroxide induced SR calcium leak from the RyR and activation of CaMKII. Moreover, administration of a mitochondrial-specific antioxidant, SkQ, prevented high-fat diet–induced phosphorylation of CaMKII and the induction of mitochondrial biogenesis. Altogether, these data suggest that increased mitochondrial ROS emission is required for the induction of SR calcium leak, activation of CaMKII, and induction of mitochondrial biogenesis in response to excess lipid availability.


International Journal of Cancer | 2010

Elevated expression of tumor necrosis factor-α signaling molecules in colonic tumors of Zucker obese (fa/fa) rats.

Swati S. Jain; Ranjana P. Bird

Zucker obese rats are highly sensitive to colon cancer and possess a plethora of metabolic abnormalities including elevated levels of cytokine tumor necrosis factor‐α (TNF‐α). The main objective of this study was to determine if physiologically elevated TNF‐α affects colonic tumor phenotype with regard to an altered TNF‐α signaling pathway. Zucker obese (fa/fa, homozygous recessive for dysfunctional leptin receptors), Zucker lean (Fa/fa, Fa/Fa) and Sprague–Dawley (SD) rats were injected twice with azoxymethane (10 mg/kg) over 2 weeks. After 30 weeks, the animals were terminated and physiological and tumor parameters were assessed. Obese rats had notably higher body and organ weights as well as plasma TNF‐α, insulin and leptin levels than lean or SD animals. A 100% tumor incidence and significantly higher tumor size, multiplicity and burden were found in obese rats compared to the lean group that had 47.8% tumor incidence. The SD group had the lowest tumor incidence (20.0%). Tumors from obese animals had higher protein levels of TNF‐α, TNF‐α‐receptor‐2 (TNFR2), nuclear transcription factor‐κB (NF‐κB) and IκB‐kinaseβ (IKKβ) compared to lean animals. In both obese and lean groups, expression levels of these proteins were higher in tumors than in surrounding, normal‐appearing colonic mucosae. These findings support an important role for TNF‐α signaling in tumorigenesis and demonstrate that tumors growing in an obese state had significantly different expression levels of TNFR2 and NF‐κB, proteins known to play a critical role in growth and survival, than those growing in the lean state. It is concluded that the physiological state of the host intricately affects tumor phenotype.


American Journal of Physiology-endocrinology and Metabolism | 2012

Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle.

Nicolette S. Bradley; Laelie A. Snook; Swati S. Jain; George J. F. Heigenhauser; Arend Bonen; Lawrence L. Spriet

Fatty acid transport proteins are present on the plasma membrane and are involved in the uptake of long-chain fatty acids into skeletal muscle. The present study determined whether acute endurance exercise increased the plasma membrane content of fatty acid transport proteins in rat and human skeletal muscle and whether the increase was accompanied by an increase in long-chain fatty acid transport in rat skeletal muscle. Sixteen subjects cycled for 120 min at ∼60 ± 2% Vo(2) peak. Two skeletal muscle biopsies were taken at rest and again following cycling. In a parallel study, eight Sprague-Dawley rats ran for 120 min at 20 m/min, whereas eight rats acted as nonrunning controls. Giant sarcolemmal vesicles were prepared, and protein content of FAT/CD36 and FABPpm was measured in human and rat vesicles and whole muscle homogenate. Palmitate uptake was measured in the rat vesicles. In human muscle, plasma membrane FAT/CD36 and FABPpm protein contents increased 75 and 20%, respectively, following 120 min of exercise. In rat muscle, plasma membrane FAT/CD36 and FABPpm increased 20 and 30%, respectively, and correlated with a 30% increase in palmitate transport following 120 min of running. These data suggest that the translocation of FAT/CD36 and FABPpm to the plasma membrane in rat skeletal muscle is related to the increase in fatty acid transport and oxidation that occurs with endurance running. This study is also the first to demonstrate that endurance cycling induces an increase in plasma membrane FAT/CD36 and FABPpm content in human skeletal muscle, which is predicted to increase fatty acid transport.


The Journal of Physiology | 2013

Exercise‐ and training‐induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis

Yuko Yoshida; Swati S. Jain; Jay T. McFarlan; Laelie A. Snook; Adrian Chabowski; Arend Bonen

Abstract  Regulation of skeletal muscle fatty acid oxidation (FAO) and adaptation to exercise training have long been thought to depend on delivery of fatty acids (FAs) to muscle, their diffusion into muscle, and muscle mitochondrial content and biochemical machinery. However, FA entry into muscle occurs via a regulatable, protein‐mediated mechanism, involving several transport proteins. Among these CD36 is key. Muscle contraction and pharmacological agents induce CD36 to translocate to the cell surface, a response that regulates FA transport, and hence FAO. In exercising CD36 KO mice, exercise duration (−44%), and FA transport (−41%) and oxidation (−37%) are comparably impaired, while carbohydrate metabolism is augmented. In trained CD36 KO mice, training‐induced upregulation of FAO is not observed, despite normal training‐induced increases in mitochondrial density and enzymes. Transfecting CD36 into sedentary WT muscle (+41%), comparable to training‐induced CD36 increases (+44%) in WT muscle, markedly upregulates FAO to rates observed in trained WT mice, but without any changes in mitochondrial density and enzymes. Evidently, in vivo CD36‐mediated FA transport is key for muscle fuel selection and training‐induced FAO upregulation, independent of mitochondrial adaptations. This CD36 molecular mechanism challenges the view that skeletal muscle FAO is solely regulated by muscle mitochondrial content and machinery.

Collaboration


Dive into the Swati S. Jain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge