Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swayam Prabha is active.

Publication


Featured researches published by Swayam Prabha.


The FASEB Journal | 2002

Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery

Jayanth Panyam; Wen Zhong Zhou; Swayam Prabha; Sanjeeb K. Sahoo; Vinod Labhasetwar

The endo‐lysosomal escape of drug carriers is crucial to enhancing the efficacy of their macromolecular payload, especially the payloads that are susceptible to lysosomal degradation. Current vectors that enable the endo‐lysosomal escape of macromolecules such as DNA are limited by their toxicity and by their ability to carry only limited classes of therapeutic agents. In this paper, we report the rapid (<10 min) endo‐lysosomal escape of biodegradable nanoparticles (NPs) formulated from the copolymers of poly(DLlactide‐co‐glycolide) (PLGA). The mechanism of rapid escape is by selective reversal of the surface charge of NPs (from anionic to cationic) in the acidic endolysosomal compartment, which causes the NPs to interact with the endo‐lysosomal membrane and escape into the cytosol. PLGA NPs are able to deliver a variety of therapeutic agents, including macromolecules such as DNA and low molecular weight drugs such as dexamethasone, intracellularly at a slow rate, which results in a sustained therapeutic effect. PLGA has a number of advantages over other polymers used in drug and gene delivery including biodegradability, biocompatibility, and approval for human use granted by the U.S. Food and Drug Administration. Hence PLGA is well suited for sustained intracellular delivery of macromolecules.—Panyam, J., Zhou, W. Z., Prabha, S., Sahoo, S. K., Labhasetwar, V. Rapid endo‐lysosomal escape of poly(DL‐lactide‐co‐glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16, 1217–1226 (2002)


Journal of Controlled Release | 2002

Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake

Sanjeeb K. Sahoo; Jayanth Panyam; Swayam Prabha; Vinod Labhasetwar

Polyvinyl alcohol (PVA) is the most commonly used emulsifier in the formulation of poly lactide and poly (D,L-lactide-co-glycolide) (PLGA) polymeric nanoparticles. A fraction of PVA remains associated with the nanoparticles despite repeated washing because PVA forms an interconnected network with the polymer at the interface. The objective of this study was to determine the parameters that influence the amount of residual PVA associated with PLGA nanoparticles and its effect on the physical properties and cellular uptake of nanoparticles. Nanoparticles were formulated by a multiple emulsion-solvent evaporation technique using bovine serum albumin (BSA) as a model protein. The parameters that affected the amount of residual PVA include the concentration of PVA and the type of organic solvent used in the emulsion. The residual PVA, in turn, influenced different pharmaceutical properties of nanoparticles such as particle size, zeta potential, polydispersity index, surface hydrophobicity, protein loading and also slightly influenced the in vitro release of the encapsulated protein. Importantly, nanoparticles with higher amount of residual PVA had relatively lower cellular uptake despite their smaller particle size. It is proposed that the lower intracellular uptake of nanoparticles with higher amount of residual PVA could be related to the higher hydrophilicity of the nanoparticle surface. In conclusion, the residual PVA associated with nanoparticles is an important formulation parameter that can be used to modulate the pharmaceutical properties of PLGA nanoparticles.


International Journal of Pharmaceutics | 2002

Size-dependency of nanoparticle-mediated gene transfection: Studies with fractionated nanoparticles

Swayam Prabha; Wen Zhong Zhou; Jayanth Panyam; Vinod Labhasetwar

Nanoparticles formulated from biodegradable polymers such as poly (lactic acid) and poly (D,L-lactide-co-glycolide) (PLGA) are being extensively investigated as non-viral gene delivery systems due to their sustained release characteristics and biocompatibility. PLGA nanoparticles for DNA delivery are mainly formulated using an emulsion-solvent evaporation technique. However, this formulation procedure results in the formation of particles with heterogeneous size distribution. The objective of the present study was to determine the relative transfectivity of the smaller- and the larger-sized fractions of nanoparticles in cell culture. PLGA nanoparticles containing a plasmid DNA encoding luciferase protein as a marker were formulated by a multiple emulsion-solvent evaporation method (mean particle diameter = 97 +/- 3 nm) and were fractionated using a membrane (pore size: 100 nm) filtration technique. The particles that passed through the membrane were designated as the smaller-sized nanoparticles (mean diameter = 70 +/- 2 nm) and the fraction that was retained on the membrane as the larger-sized nanoparticles (mean diameter = 202 +/- 9 nm). The smaller-sized nanoparticles showed a 27-fold higher transfection than the larger-sized nanoparticles in COS-7 cell line and a 4-fold higher transfection in HEK-293 cell line. The surface charge (zeta potential), cellular uptake, and the DNA release were almost similar for the two fractions of nanoparticles, suggesting that some other yet unknown factor(s) is responsible for the observed differences in the transfection levels. The results suggest that the particle size is an important factor, and that the smaller-sized fraction of the nanoparticle formulation predominantly contributes towards their transfection.


International Journal of Pharmaceutics | 2003

Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D, L-lactide-co-glycolide) nanoparticles

Jayanth Panyam; Sanjeeb K. Sahoo; Swayam Prabha; Tom W. Bargar; Vinod Labhasetwar

Nanoparticles formulated from poly(D,L-lactide-co-glycolide) (PLGA) and poly(lactide) (PLA) are being extensively investigated for different therapeutic applications such as for sustained drug, vaccine, and gene delivery. For many of these applications, it is necessary to study the intracellular distribution as well as the tissue uptake of nanoparticles to optimize the efficacy of the encapsulated therapeutic agent. Fluorescence and electron microscopic techniques are usually used for the above purposes. Colloidal gold particles and fluorescent polystyrene, which are generally used as model particles for electron and fluorescence microscopy, respectively, may not be suitable alternatives to PLGA/PLA nanoparticles for these studies mainly because of the differences in their physical properties and also because they do not contain any therapeutic agent. The aim of the present study was to develop and characterize PLGA nanoparticle formulations that would be suitable for confocal/fluorescence and transmission electron microscopic (TEM) studies. Towards this objective, PLGA nanoparticles containing 6-coumarin as a fluorescent marker and osmium tetroxide as an electron microscopic marker with bovine serum albumin (BSA) as a model protein were formulated. Different physical properties of marker-loaded nanoparticles such as particle size, zeta potential, residual PVA content and protein-loading were compared with those of unloaded nanoparticles and were found to be not significantly different. Furthermore, marker-loaded nanoparticle formulations were non-toxic to the cells as unloaded nanoparticles. Nanoparticles loaded with 6-coumarin were found to be useful for studying intracellular nanoparticle uptake and distribution using confocal microscopy while osmium tetroxide-loaded nanoparticles were found to be useful for studying nanoparticle uptake and distribution in cells and tissue using TEM. It was concluded that 6-coumarin and osmium tetroxide could serve as useful fluorescence and electron microscopy probes, respectively, for incorporation into nanoparticles to study their cellular and tissue distribution.


Pharmaceutical Research | 2004

Critical Determinants in PLGA/PLA Nanoparticle-Mediated Gene Expression

Swayam Prabha; Vinod Labhasetwar

AbstractPurpose. The aim of the study was to determine the critical determinants in nanoparticle-mediated gene transfection. It was hypothesized that different formulation parameters could affect the nanoparticle characteristics and hence its gene transfection. Methods. Nanoparticles encapsulating plasmid DNA encoding for firefly luciferase were formulated using polylactide (PLA) and poly (d,l-lactide-co-glycolide) (PLGA) polymers of different compositions and molecular weights. A multiple-emulsion solvent-evaporation method with polyvinyl alcohol (PVA) as an emulsifier was used to formulate DNA-loaded nanoparticles. Gene expression of nanoparticles was determined in breast cancer (MCF-7) and prostate cancer (PC-3) cell lines. Results. Nanoparticles formulated using PLGA polymer demonstrated greater gene transfection than those formulated using PLA polymer, and this was attributed to the higher DNA release from PLGA nanoparticles. Higher-molecular-weight PLGA resulted in the formation of nanoparticles with higher DNA loading, which demonstrated higher gene expression than those formulated with lower-molecular-weight PLGA. In addition, the nanoparticles with lower amount of surface-associated PVA demonstrated higher gene transfection in both the cell lines. Higher gene transfection with these nanoparticles was attributed to their higher intracellular uptake and cytoplasmic levels. Further study demonstrated that the molecular weight and the degree of hydrolyzation of PVA used as an emulsifier also affect the gene expression of nanoparticles. Conclusions. Results thus demonstrate that the DNA loading in nanoparticles and its release, and the surface-associated PVA influencing the intracellular uptake and endolysosomal escape of nanoparticles, are some of the critical determinants in nanoparticle-mediated gene transfection.


Journal of Medicinal Chemistry | 2014

In vitro and in vivo evaluation of water-soluble iminophosphorane ruthenium(II) compounds. A potential chemotherapeutic agent for triple negative breast cancer.

Malgorzata Frik; Alberto Martínez; Benelita T. Elie; Oscar Gonzalo; Daniel Ramírez de Mingo; Mercedes Sanaú; Roberto A. Sánchez-Delgado; Tanmoy Sadhukha; Swayam Prabha; Joe W. Ramos; Isabel Marzo; María Contel

A series of organometallic ruthenium(II) complexes containing iminophosphorane ligands have been synthesized and characterized. Cationic compounds with chloride as counterion are soluble in water (70–100 mg/mL). Most compounds (especially highly water-soluble 2) are more cytotoxic to a number of human cancer cell lines than cisplatin. Initial mechanistic studies indicate that the cell death type for these compounds is mainly through canonical or caspase-dependent apoptosis, nondependent on p53, and that the compounds do not interact with DNA or inhibit protease cathepsin B. In vivo experiments of 2 on MDA-MB-231 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (shrinkage) of 56% after 28 days of treatment (14 doses of 5 mg/kg every other day) with low systemic toxicity. Pharmacokinetic studies showed a quick absorption of 2 in plasma with preferential accumulation in the breast tumor tissues when compared to kidney and liver, which may explain its high efficacy in vivo.


Journal of Controlled Release | 2014

Nano-engineered mesenchymal stem cells as targeted therapeutic carriers

Tanmoy Sadhukha; Timothy D. O'Brien; Swayam Prabha

Poor availability in deep-seated solid tumors is a significant challenge that limits the effectiveness of currently used anticancer drugs. Approaches that can specifically enhance drug delivery to the tumor tissue can potentially improve therapeutic efficacy. In our current studies, we used nano-engineered mesenchymal stem cells (nano-engineered MSCs) as tumor-targeted therapeutic carriers. In addition to their exquisite tumor homing capabilities, MSCs overexpress efflux transporters such as P-glycoprotein and are highly drug resistant. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. Nano-engineered MSCs were prepared by treating human MSCs with drug-loaded polymeric nanoparticles. Incorporating nanoparticles in MSCs did not affect their viability, differentiation or migration potential. Nano-engineered MSCs induced dose-dependent cytotoxicity in A549 lung adenocarcinoma cells and MA148 ovarian cancer cells in vitro. An orthotopic A549 lung tumor model was used to monitor the in vivo distribution of nanoengineered MSCs. Intravenous injection of nanoparticles resulted in non-specific biodistribution, with significant accumulation in the liver and spleen while nano-engineered MSCs demonstrated selective accumulation and retention in lung tumors. These studies demonstrate the feasibility of developing nano-engineered MSCs loaded with high concentration of anticancer agents without affecting their tumor-targeting or drug resistance properties.


Cancer Gene Therapy | 2012

Inhibition of Tumor Angiogenesis and Growth by Nanoparticle-Mediated p53 Gene Therapy in Mice

Swayam Prabha; Blanka Sharma; Vinod Labhasetwar

Mutation of the p53 tumor suppressor gene, the most common genetic alteration in human cancers, results in more aggressive disease and increased resistance to conventional therapies. Aggressiveness may be related to the increased angiogenic activity of cancer cells containing mutant p53. To restore wild-type p53 function in cancer cells, we developed polymeric nanoparticles (NPs) for p53 gene delivery. Previous in vitro and in vivo studies demonstrated the ability of these NPs to provide sustained intracellular release of DNA, thus sustained gene transfection and decreased tumor cell proliferation. We investigated in vivo mechanisms involved in NP-mediated p53 tumor inhibition, with focus on angiogenesis. We hypothesize that sustained p53 gene delivery will help decrease tumor angiogenic activity and thus reduce tumor growth and improve animal survival. Xenografts of p53 mutant tumors were treated with a single intratumoral injection of p53 gene-loaded NPs (p53NPs). We observed intratumoral p53 gene expression corresponding to tumor growth inhibition, over 5 weeks. Treated tumors showed upregulation of thrombospondin-1, a potent antiangiogenic factor, and a decrease in microvessel density vs controls (saline, p53 DNA alone, and control NPs). Greater levels of apoptosis were also observed in p53NP-treated tumors. Overall, this led to significantly improved survival in p53NP-treated animals. NP-mediated p53 gene delivery slowed cancer progression and improved survival in an in vivo cancer model. One mechanism by which this was accomplished was disruption of tumor angiogenesis. We conclude that the NP-mediated sustained tumor p53 gene therapy can effectively be used for tumor growth inhibition.


Biomaterials | 2016

Glycoengineered mesenchymal stem cells as an enabling platform for two-step targeting of solid tumors.

Buddhadev Layek; Tanmoy Sadhukha; Swayam Prabha

Current tumor targeted drug and diagnostic delivery systems suffer from a lack of selectivity for tumor cells. Here, we propose a two-step tumor targeting strategy based on mesenchymal stem cells (MSCs), which actively traffic to tumors. We developed glycoengineering protocols to induce expression of non-natural azide groups on the surface of MSCs without affecting their viability or tumor homing properties. Glycoengineered MSCs demonstrated active tumor homing in subcutaneous and orthotopic lung and ovarian tumor models. Subsequent systemic administration of dibenzyl cyclooctyne (DBCO)-labeled fluorophores or nanoparticles to MSC pretreated mice resulted in enhanced tumor accumulation of these agents through bio-orthogonal copper-free click chemistry. Further, administration of glycoengineered MSCs along with paclitaxel-loaded DBCO-functionalized nanoparticles resulted in significant (p < 0.05) inhibition of tumor growth and improved survival (p < 0.0001) in an orthotopic metastatic ovarian tumor model. These results provide evidence for the potential of MSC-based two-step targeting strategy to improve the tumor specificity of diagnostic agents and drugs, and thus potentially improve the treatment outcomes for patients diagnosed with cancer.


Drug Delivery and Translational Research | 2018

Incorporation of lipolysis in monolayer permeability studies of lipid-based oral drug delivery systems

Tanmoy Sadhukha; Buddhadev Layek; Swayam Prabha

Lipid-based drug delivery systems, a well-tolerated class of formulations, have been evaluated extensively to enhance the bioavailability of poorly soluble drugs. However, it has been difficult to predict the in vivo performance of lipid dosage forms based on conventional in vitro techniques such as cell monolayer permeability studies because of the complexity of the gastrointestinal processing of lipid formulations. In the current study, we explored the feasibility of coupling Caco-2 and Madin-Darby canine kidney monolayer permeability studies with lipolysis, a promising in vitro technique to evaluate lipid systems. A self-emulsifying lipid delivery system was formulated using a blend of oil (castor oil), surfactant (Labrasol® or PL497), and co-surfactant (lecithin). Formulations demonstrating high drug solubility and rapid self-emulsification were selected to study the effect of lipolysis on in vitro cell permeability. Lipolysis of the formulations was carried out using pancreatin as the digestive enzyme. All the digested formulations compromised monolayer integrity as indicated by lowered trans-epithelial electrical resistance (TEER) and enhanced Lucifer yellow (LY) permeability. Further, the changes in TEER value and LY permeability were attributable to the digestion products of the formulation rather than the individual lipid excipients, drug, digestion enzyme, or the digestion buffer. The digested formulations were fractionated into pellet, oily phase, and aqueous phase, and the effect of each of these on cell viability was examined. Interestingly, the aqueous phase, which is considered important for in vivo drug absorption, was responsible for cytotoxicity. Because lipid digestion products lead to disruption of cell monolayer, it may not be appropriate to combine lipolysis with cell monolayer permeability studies. Additional in vivo studies are needed to determine any potential side effects of the lipolysis products on the intestinal permeability barrier, which could determine the suitability of lipid-based systems for oral drug delivery.

Collaboration


Dive into the Swayam Prabha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Buddhadev Layek

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjeeb K. Sahoo

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benelita T. Elie

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Joe W. Ramos

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

María Contel

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Wen Zhong Zhou

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge