Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swee Lay Thein is active.

Publication


Featured researches published by Swee Lay Thein.


Nature Genetics | 2009

A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium.

Nicole Soranzo; Tim D. Spector; Massimo Mangino; Brigitte Kühnel; Augusto Rendon; Alexander Teumer; Christina Willenborg; Benjamin J. Wright; Li Chen; Mingyao Li; Perttu Salo; Benjamin F. Voight; Philippa Burns; Roman A. Laskowski; Yali Xue; Stephan Menzel; David Altshuler; John R. Bradley; Suzannah Bumpstead; Mary-Susan Burnett; Joseph M. Devaney; Angela Döring; Roberto Elosua; Stephen E. Epstein; Wendy N. Erber; Mario Falchi; Stephen F. Garner; Mohammed J. R. Ghori; Alison H. Goodall; Rhian Gwilliam

The number and volume of cells in the blood affect a wide range of disorders including cancer and cardiovascular, metabolic, infectious and immune conditions. We consider here the genetic variation in eight clinically relevant hematological parameters, including hemoglobin levels, red and white blood cell counts and platelet counts and volume. We describe common variants within 22 genetic loci reproducibly associated with these hematological parameters in 13,943 samples from six European population-based studies, including 6 associated with red blood cell parameters, 15 associated with platelet parameters and 1 associated with total white blood cell count. We further identified a long-range haplotype at 12q24 associated with coronary artery disease and myocardial infarction in 9,479 cases and 10,527 controls. We show that this haplotype demonstrates extensive disease pleiotropy, as it contains known risk loci for type 1 diabetes, hypertension and celiac disease and has been spread by a selective sweep specific to European and geographically nearby populations.


Nature Genetics | 2007

A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15

Stephan Menzel; Chad Garner; Ivo Gut; Fumihiko Matsuda; Masao Yamaguchi; Simon Heath; Mario Foglio; Diana Zelenika; Anne Boland; Helen Rooks; Steve Best; Tim D. Spector; Martin Farrall; Mark Lathrop; Swee Lay Thein

F cells measure the presence of fetal hemoglobin, a heritable quantitative trait in adults that accounts for substantial phenotypic diversity of sickle cell disease and β thalassemia. We applied a genome-wide association mapping strategy to individuals with contrasting extreme trait values and mapped a new F cell quantitative trait locus to BCL11A, which encodes a zinc-finger protein, on chromosome 2p15. The 2p15 BCL11A quantitative trait locus accounts for 15.1% of the trait variance.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults.

Swee Lay Thein; Stephan Menzel; Xu Peng; Steve Best; Jie Jiang; James Close; Nicholas Silver; Ageliki Gerovasilli; Chen Ping; Masao Yamaguchi; Karin Wahlberg; Pinar Ulug; Tim D. Spector; Chad Garner; Fumihiko Matsuda; Martin Farrall; Mark Lathrop

Individual variation in fetal hemoglobin (HbF, α2γ2) response underlies the remarkable diversity in phenotypic severity of sickle cell disease and β thalassemia. HbF levels and HbF-associated quantitative traits (e.g., F cell levels) are highly heritable. We have previously mapped a major quantitative trait locus (QTL) controlling F cell levels in an extended Asian-Indian kindred with β thalassemia to a 1.5-Mb interval on chromosome 6q23, but the causative gene(s) are not known. The QTL encompasses several genes including HBS1L, a member of the GTP-binding protein family that is expressed in erythroid progenitor cells. In this high-resolution association study, we have identified multiple genetic variants within and 5′ to HBS1L at 6q23 that are strongly associated with F cell levels in families of Northern European ancestry (P = 10−75). The region accounts for 17.6% of the F cell variance in northern Europeans. Although mRNA levels of HBS1L and MYB in erythroid precursors grown in vitro are positively correlated, only HBS1L expression correlates with high F cell alleles. The results support a key role for the HBS1L-related genetic variants in HbF control and illustrate the biological complexity of the mechanism of 6q QTL as a modifier of fetal hemoglobin levels in the β hemoglobinopathies.


Haematologica | 2010

Tailoring iron chelation by iron intake and serum ferritin: the prospective EPIC study of deferasirox in 1744 patients with transfusion-dependent anemias

Maria Domenica Cappellini; John B. Porter; Amal El-Beshlawy; Chi Kong Li; John F. Seymour; Mohsen Saleh Elalfy; Norbert Gattermann; Stéphane Giraudier; Jong-Wook Lee; Lee Lee Chan; Kai-Hsin Lin; Christian Rose; Ali Taher; Swee Lay Thein; Vip Viprakasit; Dany Habr; Gabor Domokos; Bernard Roubert; Antonis Kattamis

Background Following a clinical evaluation of deferasirox (Exjade®) it was concluded that, in addition to baseline body iron burden, ongoing transfusional iron intake should be considered when selecting doses. The 1-year EPIC study, the largest ever investigation conducted for an iron chelator, is the first to evaluate whether fixed starting doses of deferasirox, based on transfusional iron intake, with dose titration guided by serum ferritin trends and safety markers, provides clinically acceptable chelation in patients (aged ≥2 years) with transfusional hemosiderosis from various types of anemia. Design and Methods The recommended initial dose was 20 mg/kg/day for patients receiving 2–4 packed red blood cell units/month and 10 or 30 mg/kg/day was recommended for patients receiving less or more frequent transfusions, respectively. Dose adjustments were based on 3-month serum ferritin trends and continuous assessment of safety markers. The primary efficacy end-point was change in serum ferritin after 52 weeks compared with baseline. Results The 1744 patients enrolled had the following conditions; thalassemia (n=1115), myelodysplastic syndromes (n=341), aplastic anemia (n=116), sickle cell disease (n=80), rare anemias (n=43) and other transfused anemias (n=49). Overall, there was a significant reduction in serum ferritin from baseline (−264 ng/mL; P<0.0001), reflecting dosage adjustments and ongoing iron intake. The most common (>5%) adverse events were gastrointestinal disturbances (28%) and skin rash (10%). Conclusions Analysis of this large, prospectively collected data set confirms the response to chelation therapy across various anemias, supporting initial deferasirox doses based on transfusional iron intake, with subsequent dose titration guided by trends in serum ferritin and safety markers (clinicaltrials.gov identifier: NCT00171821).


British Journal of Haematology | 2009

Discovering the genetics underlying foetal haemoglobin production in adults.

Swee Lay Thein; Stephan Menzel

Sickle cell disease (SCD) and β thalassaemia, caused by lesions that affect the HBB (β globin gene), form the most common human genetic disorders world‐wide, and represent a major public health problem. Inter‐individual variation in foetal haemoglobin (HbF) expression is a known and heritable disease modifier; high HbF levels are correlated with reduced morbidity and mortality in both diseases. This review traces our progress in the understanding of the persistence of HbF in adults as a quantitative trait and the genetic approaches used in teasing out the loci contributing to its variability in normal populations and in patients with haemoglobinopathies. Three major loci – Xmn1‐HBG2 single nucleotide polymorphism, HBS1L‐MYB intergenic region on chromosome 6q, and BCL11A– contribute 20–50% of the trait variance in patients with sickle cell anaemia and healthy European Caucasians. It is likely that the remaining trait variance is due to numerous other loci, many contributing modest effects. Identification of the three major loci has not yet been translated into new therapeutic approaches for HbF reactivation but an immediate application would be an improved prediction of one’s ability to produce HbF, which in turn, may improve prediction of disease severity.


British Journal of Cancer | 1987

Detection of somatic changes in human cancer DNA by DNA fingerprint analysis

Swee Lay Thein; A. J. Jeffreys; H. C. Gooi; F. Cotter; J. Flint; N. T. J. O'Connor; D. J . Weatherall; James S. Wainscoat

Minisatellite DNA probes which can detect a large number of autosomal loci dispersed throughout the human genome were used to examine the constitutional and tumour DNA of 35 patients with a variety of cancers of which eight were of gastrointestinal origin. Somatic changes were seen in the tumour DNA in ten of the 35 cases. The changes included alterations in the relative intensities of hybridising DNA fragments, and, in three cases of cancers of gastrointestinal origin, the appearance of novel minisatellite fragments not seen in the corresponding constitutional DNA. The results of this preliminary study suggests that DNA fingerprint analysis provides a useful technique for identifying somatic changes in cancers.


British Journal of Haematology | 2004

Genetic insights into the clinical diversity of beta thalassaemia

Swee Lay Thein

The identification of defective genes underlying inherited diseases has made it clear that patients with the same genotype can have very variable patterns of clinical expression 2 . The profound phenotypic variability of the b thalassaemias, including age of onset, varying involvement of different organs and transfusion needs, is prototypical of how the wide spectrum in disease severity of a monogenic disorder can be generated. Relating phenotype to genotype is complicated not only by the complex interaction of the environment with the different allelic variants, but interaction with other genetic factors at the secondary and tertiary levels is also involved. Evidence for these modifier genes comes from the range of phenotypes within families sharing the same genotypes. This article presents an overview of the b globin gene structure, function and expression, followed by a short description of the clinical and haematological diversity encountered in b thalassaemia and the underlying pathophysiology. A discussion of the genetic basis of the disease is presented with an overview of the various genetic loci (modifier genes) that modulate the effects of its clinical expression on different organs.


Nature Genetics | 2011

Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

Belinda Giardine; Joseph A. Borg; Douglas R. Higgs; Kenneth R. Peterson; Sjaak Philipsen; Donna Maglott; Belinda K. Singleton; David J. Anstee; A. Nazli Basak; Barnaby Clark; Flavia C Costa; Paula Faustino; Halyna Fedosyuk; Alex E. Felice; Alain Francina; Renzo Galanello; Monica V E Gallivan; Marianthi Georgitsi; Richard J. Gibbons; P. C. Giordano; Cornelis L. Harteveld; James D. Hoyer; Martin Jarvis; Philippe Joly; Emmanuel Kanavakis; Panagoula Kollia; Stephan Menzel; Webb Miller; Kamran Moradkhani; John Old

We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.


PLOS Genetics | 2011

Multiple Loci Are Associated with White Blood Cell Phenotypes

Michael A. Nalls; David Couper; Toshiko Tanaka; Frank J. A. van Rooij; Ming-Huei Chen; Albert V. Smith; Daniela Toniolo; Neil A. Zakai; Qiong Yang; Andreas Greinacher; Andrew R. Wood; Melissa Garcia; Paolo Gasparini; Yongmei Liu; Thomas Lumley; Aaron R. Folsom; Alex P. Reiner; Christian Gieger; Vasiliki Lagou; Janine F. Felix; Henry Völzke; Natalia Gouskova; Alessandro Biffi; Angela Döring; Uwe Völker; Sean Chong; Kerri L. Wiggins; Augusto Rendon; Abbas Dehghan; Matt Moore

White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds.


Journal of Clinical Investigation | 2014

HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers

Ralph Stadhouders; Suleyman Aktuna; Supat Thongjuea; Ali Aghajanirefah; Farzin Pourfarzad; Wilfred van IJcken; Boris Lenhard; Helen Rooks; Steve Best; Stephan Menzel; Frank Grosveld; Swee Lay Thein; Eric Soler

Genetic studies have identified common variants within the intergenic region (HBS1L-MYB) between GTP-binding elongation factor HBS1L and myeloblastosis oncogene MYB on chromosome 6q that are associated with elevated fetal hemoglobin (HbF) levels and alterations of other clinically important human erythroid traits. It is unclear how these noncoding sequence variants affect multiple erythrocyte characteristics. Here, we determined that several HBS1L-MYB intergenic variants affect regulatory elements that are occupied by key erythroid transcription factors within this region. These elements interact with MYB, a critical regulator of erythroid development and HbF levels. We found that several HBS1L-MYB intergenic variants reduce transcription factor binding, affecting long-range interactions with MYB and MYB expression levels. These data provide a functional explanation for the genetic association of HBS1L-MYB intergenic polymorphisms with human erythroid traits and HbF levels. Our results further designate MYB as a target for therapeutic induction of HbF to ameliorate sickle cell and β-thalassemia disease severity.

Collaboration


Dive into the Swee Lay Thein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad Garner

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge