Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Syahida Ahmad is active.

Publication


Featured researches published by Syahida Ahmad.


International Journal of Molecular Sciences | 2011

Flavonoid Analyses and Antimicrobial Activity of Various Parts of Phaleria macrocarpa (Scheff.) Boerl Fruit

Rudi Hendra; Syahida Ahmad; Aspollah Sukari; M. Yunus Shukor; Ehsan Oskoueian

Phaleria macrocarpa (Scheff.) Boerl (Thymelaceae) is commonly known as ‘Crown of God’, ‘Mahkota Dewa’, and ‘Pau’. It originates from Papua Island, Indonesia and it grows in tropical areas. Empirically, it is potent in treating the hypertensive, diabetic, cancer and diuretic patients. It has a long history of ethnopharmacological usage, and the lack of information about its biological activities led us to investigate the possible biological activities by characterisation of flavonoids and antimicrobial activity of various part of P. macrocarpa against pathogenic bacteria and fungi. The results showed that kaempferol, myricetin, naringin, and rutin were the major flavonoids present in the pericarp while naringin and quercetin were found in the mesocarp and seed. Furthermore, the antibacterial activity of different parts of P. macrocarpa fruit showed a weak ability to moderate antibacterial activity against pathogenic tested bacteria (inhibition range: 0.93–2.17 cm) at concentration of 0.3 mg/disc. The anti fungi activity was only found in seed extract against Aspergillus niger (1.87 cm) at concentration of 0.3 mg/well. From the results obtained, P. macrocarpa fruit could be considered as a natural antimicrobial source due to the presence of flavonoid compounds.


Journal of Ethnopharmacology | 2011

The methanolic extract of Boesenbergia rotunda (L.) Mansf. and its major compound pinostrobin induces anti-ulcerogenic property in vivo: Possible involvement of indirect antioxidant action

Siddig Ibrahim Abdelwahab; Syam Mohan; Mahmmod Ameen Abdulla; Mohd Aspollah Sukari; Ahmad Bustamam Abdul; Manal Mohamed Elhassan Taha; Suvitha Syam; Syahida Ahmad; Ka-Heng Lee

ETHNOPHARMACOLOGICAL RELEVANCE Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated. MATERIALS AND METHODS Pinostrobin was isolated form the rhizomes of B. rotunda. Ulcer index, gastric juice acidity, mucus content, gross and histological gastric lesions and thiobarbituric acid reactive substances (TBARS) were evaluated in ethanol-induced ulcer in vivo. The effect of pinostrobin into lipopolysaccharide/interferon-γ stimulated rodent cells, COX-1 and COX-2 activities were done in vitro. RESULTS Pre-treatment with MEBR, pinostrobin or omeprazole protected the gastric mucosa as seen by reduction in ulcer area and mucosal content, reduced or absence of submucosal edema and leucocytes infiltration. Pinostrobin significantly (p<0.05) lowered the elevated TBARS level into gasteric homogenate. Pinostrobin did not produced significant in vitro inhibition of NO from LPS/IFN-γ activated rodent cells without affecting the viability of these cells. Further, the compound did bot revleaed inhibitory effects on both COX- 1& 2 enzymes. The antioxidant assays also exhibited non significance in vitro. CONCLUSION Thus it can be concluded that MEBR possesses anti-ulcer activity, which could be attributed to indirect anti-oxidant mechanism of pinostrobin but not to the intervention with nitric oxide and COX inflammation pathways.


International Journal of Molecular Sciences | 2011

Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract

Ehsan Oskoueian; Norhani Abdullah; Syahida Ahmad; Wan Zuhainis Saad; Abdul Rahman Omar; Yin Wan Ho

Defatted Jatropha curcas L. (J. curcas) seed kernels contained a high percentage of crude protein (61.8%) and relatively little acid detergent fiber (4.8%) and neutral detergent fiber (9.7%). Spectrophotometric analysis of the methanolic extract showed the presence of phenolics, flavonoids and saponins with values of 3.9, 0.4 and 19.0 mg/g DM, respectively. High performance liquid chromatography (HPLC) analyses showed the presence of gallic acid and pyrogallol (phenolics), rutin and myricetin (flavonoids) and daidzein (isoflavonoid). The amount of phorbol esters in the methanolic extract estimated by HPLC was 3.0 ± 0.1 mg/g DM. Other metabolites detected by GC-MS include: 2-(hydroxymethyl)-2 nitro-1,3-propanediol, β-sitosterol, 2-furancarboxaldehyde, 5-(hydroxymethy) and acetic acid in the methanolic extract; 2-furancarboxaldehyde, 5-(hydroxymethy), acetic acid and furfural (2-furancarboxaldehyde) in the hot water extract. Methanolic and hot water extracts of kernel meal showed antimicrobial activity against both Gram positive and Gram negative pathogenic bacteria (inhibition range: 0–1.63 cm) at the concentrations of 1 and 1.5 mg/disc. Methanolic extract exhibited antioxidant activities that are higher than hot water extract and comparable to β-carotene. The extracts tended to scavenge the free radicals in the reduction of ferric ion (Fe3+) to ferrous ion (Fe2+). Cytotoxicity assay results indicated the potential of methanolic extract as a source of anticancer therapeutic agents toward breast cancer cells.


BMC Complementary and Alternative Medicine | 2011

Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit

Rudi Hendra; Syahida Ahmad; Ehsan Oskoueian; Aspollah Sukari; M. Yunus Shukor

BackgroundPhaleria macrocarpa (Scheff.) Boerl (Thymelaceae) originates from Papua Island, Indonesia and grows in tropical areas. The different parts of the fruit of P. macrocarpa were evaluated for antioxidant, anti-inflammatory, and cytotoxic activities.MethodsPhaleria macrocarpa fruit were divided into pericarp, mesocarp and seed. All parts of the fruit were reflux extracted with methanol. The antioxidant activity of the extracts were characterized in various in vitro model systems such as FTC, TBA, DPPH radical, reducing power and NO radical. Anti-inflammatory assays were done by using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-γ and cytotoxic activities were determined by using several cancer cell lines and one normal cell lineResultsThe results showed that different parts (pericarp, mesocarp, and seed) of Phaleria macrocarpa fruit contain various amount of total phenolic (59.2 ± 0.04, 60.5 ± 0.17, 47.7 ± 1.04 mg gallic acid equivalent/g DW) and flavonoid compounds (161.3 ± 1.58, 131.7 ± 1.66, 35.9 ± 2.47 mg rutin equivalent/g DW). Pericarp and mesocarp showed high antioxidant activities by using DPPH (71.97%, 62.41%), ferric reducing antioxidant power (92.35%, 78.78%) and NO scavenging activity (65.68%, 53.45%). Ferric thiocyanate and thiobarbituric acid tests showed appreciable antioxidant activity in the percentage hydroperoxides inhibitory activity from pericarp and mesocarp in the last day of the assay. Similarly, the pericarp and mesocarp inhibited inducible nitric oxide synthesis with values of 63.4 ± 1.4% and 69.5 ± 1.4% in macrophage RAW 264.7 cell lines induced by LPS/IFN-γ indicating their notable anti-inflammatory potential. Cytotoxic activities against HT-29, MCF-7, HeLa and Chang cell lines were observed in all parts.ConclusionsThese results indicated the possible application of P. macrocarpa fruit as a source of bioactive compounds, potent as an antioxidant, anti inflammatory and cytotoxic agents.


Fitoterapia | 2011

Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: Role of reactive nitrogen species and cyclooxygenase enzyme inhibition

Siddig Ibrahim Abdelwahab; Loiy Elsir Ahmed Hassan; Hasnah Mohd Sirat; Sakina Yagi; Waleed Syaed Koko; Syam Mohan; Manal Mohamed Elhassan Taha; Syahida Ahmad; Cheah Shiau Chuen; Putri Narrima; Mohd Mustafa Rais; A. Hamid A. Hadi

The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rats paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS.


Journal of Ethnopharmacology | 2014

Mechanism(s) of action involved in the gastroprotective activity of Muntingia calabura

Zainul Amiruddin Zakaria; Tavamani Balan; Velan Suppaiah; Syahida Ahmad; Fadzureena Jamaludin

ETHNOPHARMACOLOGICAL RELEVANCE Muntingia calabura L. (Muntingiaceae) is locally known as kerukup siam. Its leaves, flowers, barks and roots have been used traditionally in East Asia and South America to treat various diseases including ulcer-related diseases. The present study aimed to investigate the mechanism(s) of gastroprotective effect of methanol extract of Muntingia calabura leaves (MEMC) using the pylorus ligation induced gastric ulceration in rats. MATERIALS AND METHODS Five groups of rats (n=6) were administered orally once daily for 7 days with 8% Tween 80 (negative control), 100 mg/kg ranitidine (positive control), or MEMC (100, 250 or 500 mg/kg), followed by the ulcer induction via ligation of the pyloric part of the rats stomach. This was followed by the macroscopic analysis of the stomach, evaluation of gastric content parameters, and quantification of mucus content. The antioxidant (measured using the superoxide anion and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging, oxygen radical absorbance capacity (ORAC) and total phenolic content (TPC) assays), anti-inflammatory (evaluated using the in vitro lipoxygenase and xanthine oxidase assays), phytoconstituents and HPLC analysis of MEMC were also carried out. RESULTS The MEMC significantly (p<0.05) reduced gastric lesion in this model. Furthermore, the extract also significantly (p<0.01) reduced the volume of gastric content whereas the total acidity was significantly (p<0.05) reduced in the doses of 100 and 500 mg/kg MEMC. Moreover, the mucus content increased significantly (p<0.01) in MEMC-treated rats. The extract also showed high antioxidant and anti-inflammatory activities in all assays tested, and demonstrated the presence of high tannins and saponins followed by flavonoids. CONCLUSION The MEMC exerted gastroprotective effect via several mechanisms including the anti-secretory, antioxidant and anti-inflammatory activities. These activities could be attributed to the presence of tannins, saponins and flavonoids (e.g. rutin, quercitrin, fisetin and dihydroquercetin).


BMC Complementary and Alternative Medicine | 2013

Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of Labisia pumila benth : from microwave obtained extracts.

Ehsan Karimi; Hawa Z. E. Jaafar; Syahida Ahmad

BackgroundLabisia pumila, locally known as Kacip Fatimah, is a forest-floor plant that has tremendous potential in the herbal industry. It is one of the five herbal plants identified by the government as one of the national key economic areas to be developed for commercial purposes. There are three varieties of L. pumila namely, L. pumila var. pumila, L. pumila var. alata and L. pumila var. lanceolata and each has its own use.MethodsThe leaves and roots of the three varieties of L. pumila Benth. were extracted using microwave assisted extraction (MAE). Antifungal activity of all plant extracts were characterized against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc. Anti-inflammatory assays were performed using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-g and cytotoxic activity was determined using several cancer cell lines and one normal cell line.ResultsThe overall result demonstrated that leaf and root extracts of all three varieties of L. pumila exhibited moderate to appreciable antifungal activity against Fusarium sp., Candida sp. and Mucor compared to streptomycin used as positive control. Leaf and root extracts of all varieties significantly decreased NO release. However, the root extracts showed higher activity compared to the leaf extracts. Cytotoxic activity against MCF-7, MDA-MB-231 and Chang cell lines were observed with all extracts.ConclusionsThese findings suggest the potential use of L. pumila Benth. as a natural medicine and indicated the possible application of this medicinal plant such anti inflammatory activity and cytotoxic agents.


Brazilian Journal of Medical and Biological Research | 2012

In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.) (fingerroot)

N.M. Isa; Siddig Ibrahim Abdelwahab; Syam Mohan; Ahmad Bustaman Abdul; Mohd Aspollah Sukari; Manal Mohamed Elhassan Taha; Suvitha Syam; Putri Narrima; S.Ch. Cheah; Syahida Ahmad; Mohd Rais Mustafa

The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC50, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µg/mL and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µg/mL. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.


Molecules | 2011

A curcumin derivative, 2,6-bis(2,5-dimethoxybenzylidene)-cyclohexanone (BDMC33) attenuates prostaglandin E2 synthesis via selective suppression of cyclooxygenase-2 in IFN-γ/LPS-stimulated macrophages..

Ka-Heng Lee; Faridah Abas; Noorjahan Banu Alitheen; Khozirah Shaari; Nordin H. Lajis; Syahida Ahmad

Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE2 synthesis and cyclooxygenase (COX) expression in IFN-γ/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE2 synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC50 value of 47.33 ± 1.00 µM. Interestingly, the PGE2 inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-γ/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE2 synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.


Molecules | 2014

Synthesis and Sar Study of Diarylpentanoid Analogues as New Anti-Inflammatory Agents

Sze Wei Leong; Siti Munirah Mohd Faudzi; Faridah Abas; Mohd Fadhlizil Fasihi Mohd Aluwi; Kamal Rullah; Lam Kok Wai; Mohd Nazri Abdul Bahari; Syahida Ahmad; Chau Ling Tham; Khozirah Shaari; Nordin Hj. Lajis

A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure–activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.

Collaboration


Dive into the Syahida Ahmad's collaboration.

Top Co-Authors

Avatar

Faridah Abas

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Khozirah Shaari

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ehsan Oskoueian

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge