Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Syahril Abdullah is active.

Publication


Featured researches published by Syahril Abdullah.


Nature Biotechnology | 2008

CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression

Stephen C. Hyde; Ian A. Pringle; Syahril Abdullah; A.E Lawton; Lee A. Davies; A Varathalingam; G Nunez-Alonso; Anne-Marie Green; R.P Bazzani; Stephanie G. Sumner-Jones; Mario Chan; Hongyu Li; N.S Yew; Seng H. Cheng; A C Boyd; Jane C. Davies; U Griesenbach; David J. Porteous; David N. Sheppard; Felix M. Munkonge; Eric W. F. W. Alton; Deborah R. Gill

Pulmonary delivery of plasmid DNA (pDNA)/cationic liposome complexes is associated with an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response and brief duration of transgene expression. We demonstrate that retention of even a single CpG in pDNA is sufficient to elicit an inflammatory response, whereas CpG-free pDNA vectors do not. Using a CpG-free pDNA expression vector, we achieved sustained (≥56 d) in vivo transgene expression in the absence of lung inflammation.


Pathology & Oncology Research | 2013

Calreticulin and Cancer

Mohammadreza Zamanian; Abhi Veerakumarasivam; Syahril Abdullah; Rozita Rosli

Calreticulin (CRT) as a multi-functional endoplasmic reticulum protein is involved in a spectrum of cellular processes which ranges from calcium homeostasis and chaperoning to cell adhesion and finally malignant formation and progression. Previous studies have shown a contributing role for CRT in a range of different cancers. This present review will focus on the possible roles of CRT in the progression of malignant proliferation and the mechanisms involved in its contribution to cancer invasion.


Journal of Assisted Reproduction and Genetics | 2011

Advancements in reprogramming strategies for the generation of induced pluripotent stem cells

Mei I Lai; Wai Yeng Wendy-Yeo; Rajesh Ramasamy; Norshariza Nordin; Rozita Rosli; Abhi Veerakumarasivam; Syahril Abdullah

Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.


Journal of Bioscience and Bioengineering | 2012

FORMATION AND CHARACTERIZATION OF PDNA-LOADED ALGINATE MICROSPHERES FOR ORAL ADMINISTRATION IN MICE

Nadine Nograles; Syahril Abdullah; Mariana Nor Shamsudin; Nashiru Billa; Rozita Rosli

Alginate, a natural polysaccharide, was explored in this study as an oral delivery vehicle of a mammalian expression vector into the murine intestinal mucosa. Alginate microspheres were produced through water-in-oil (W/O) emulsification method. Average diameter sizes of microspheres were 46.88 μm±3.07 μm with significant size reduction upon utilization of 1.0% Span80. Plasmid DNA (pDNA) carrying green fluorescent protein reporter gene (GFP), pVAX-GFP, was encapsulated within microspheres at efficiencies of 72.9 to 74.4%, carrying maximum load of 6 μg pDNA. Alginate microspheres demonstrated shrinkage in pH 1.2 and swelling in pH 9.0 with pDNA release about twice the amount released in acidic environment. Oral delivery of pVAX-GFP loaded-microspheres, at 50 μg, 100 μg and 150 μg dose, was performed on BALB/c mice. Tissue biodistribution, investigated through flow cytometric analysis, demonstrated GFP positive intestinal cells (<1.0%) with 1.3-fold higher levels for the 100 μg dose; therefore suggesting feasibility of the approach for oral gene delivery and vaccination.


BioMed Research International | 2010

Gene transfer into the lung by nanoparticle dextran-spermine/plasmid DNA complexes.

Syahril Abdullah; Wai Yeng Wendy-Yeo; Hossein Hosseinkhani; Mohsen Hosseinkhani; Ehab Masrawa; Rajesh Ramasamy; Rozita Rosli; Sabariah Abdul Rahman; Abraham J. Domb

A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.


Journal of Pharmaceutical Sciences | 2013

Cellulose Acetate Phthalate Microencapsulation and Delivery of Plasmid DNA to the Intestines

Aimi Melati Hanafi; Nadine Nograles; Syahril Abdullah; Mariana Nor Shamsudin; Rozita Rosli

Cellulose acetate phthalate (CAP) microcapsules were formulated to deliver plasmid DNA (pDNA) to the intestines. The microcapsules were characterized and were found to have an average diameter of 44.33 ± 30.22 μm, and were observed to be spherical with smooth surface. The method to extract pDNA from CAP was modified to study the release profile of the pDNA. The encapsulated pDNA was found to be stable. Exposure to the acidic and basic pH conditions, which simulates the pH environment in the stomach and the intestines, showed that the release occurred in a stable manner in the former, whereas it was robust in the latter. The loading capacity and encapsulation efficiency of the microcapsules were low but the CAP recovery yield was high which indicates that the microcapsules were efficiently formed but the loading of pDNA can be improved. In vitro transfection study in 293FT cells showed that there was a significant percentage of green-fluorescent-protein-positive cells as a result of efficient transfection from CAP-encapsulated pDNA. Biodistribution studies in BALB/c mice indicate that DNA was released at the stomach and intestinal regions. CAP microcapsules loaded with pDNA, as described in this study, may be useful for potential gene delivery to the intestines for prophylactic or therapeutic measures for gastrointestinal diseases.


Journal of Dispersion Science and Technology | 2014

Using Nanoparticle Tracking Analysis (NTA) to Decipher Mucoadhesion Propensity of Curcumin-Containing Chitosan Nanoparticles and Curcumin Release

Lay-Hong Chuah; Clive J. Roberts; Nashiru Billa; Syahril Abdullah; Rozita Rosli; Sivakumar Manickam

Real-time nanoparticle tracking analysis (NTA) was used to evaluate the propensity of curcumin-containing chitosan nanoparticles (CUR-CS-NP) to muco adhere and release curcumin under simulated colon conditions. This novel procedure is relatively simple and fast and does not require use of animals, but more importantly, it permits the correlation of physical changes to the CUR-CS-NP with the observed behavior under simulated conditions in realtime. The CUR-CS-NP formed spontaneous aggregates in response to exposure to mucin. This observation correlated with curcumin release from CUR-CS-NP was observed in phosphate buffer (pH 7.4) where, 81% of curcumin was released within 6 hours. Atomic force microscopy imaging CUR-CS-NP exposed to mucin solution revealed a decorated surface of the CUR-CS-NP by mucin, consistent with expected electrostatic interactions between the two. The use of NTA, thus, provided us with a means of ascertaining the performance of the CUR-CS-NP under simulated colonic conditions and we propose that this prototype delivery system could be the basis for an effective colon mucoadhesive drug delivery system.


Gene | 2012

Lentivirus vector driven by polybiquitin C promoter without woodchuck posttranscriptional regulatory element and central polypurine tract generates low level and short-lived reporter gene expression

Siew Ching Ngai; Rozita Rosli; Norshariza Nordin; Abhi Veerakumarasivam; Syahril Abdullah

Lentivirus (LV) encoding woodchuck posttranscriptional regulatory element (WPRE) and central polypurine tract (cPPT) driven by CMV promoter have been proven to act synergistically to increase both transduction efficiency and gene expression. However, the inclusion of WPRE and cPPT in a lentiviral construct may pose safety risks when administered to human. A simple lentiviral construct driven by an alternative promoter with proven extended duration of gene expression without the two regulatory elements would be free from the risks. In a non-viral gene delivery context, gene expression driven by human polybiquitin C (UbC) promoter resulted in higher and more persistent expression in mouse as compared to cytomegalovirus (CMV) promoter. In this study, we measured the efficiency and persistency of green fluorescent protein (GFP) reporter gene expression in cells transduced with LV driven by UbC (LV/UbC/GFP) devoid of the WPRE and cPPT in comparison to the established LV construct encoding WPRE and cPPT, driven by CMV promoter (LV/CMV/GFP). However, we found that LV/UbC/GFP was inferior to LV/CMV/GFP in many aspects: (i) the titer of virus produced; (ii) the levels of reporter gene expression when MOI value was standardized; and (iii) the transduction efficiency in different cell types. The duration of reporter gene expression in selected cell lines was also determined. While the GFP expression in cells transduced with LV/CMV/GFP persisted throughout the experimental period of 14 days, expression in cells transduced with LV/UbC/GFP declined by day 2 post-transduction. In summary, the LV driven by the UbC promoter without the WPRE and cPPT does not exhibit enhanced or durable transgene expression.


Neuroscience Bulletin | 2017

In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain

Shahidee Zainal Abidin; Jia-Wen Leong; Marzieh Mahmoudi; Norshariza Nordin; Syahril Abdullah; Pike See Cheah; King Hwa Ling

Abstract MicroRNAs are small non-coding RNAs that play crucial roles in the regulation of gene expression and protein synthesis during brain development. MiR-3099 is highly expressed throughout embryogenesis, especially in the developing central nervous system. Moreover, miR-3099 is also expressed at a higher level in differentiating neurons in vitro, suggesting that it is a potential regulator during neuronal cell development. This study aimed to predict the target genes of miR-3099 viain-silico analysis using four independent prediction algorithms (miRDB, miRanda, TargetScan, and DIANA-micro-T-CDS) with emphasis on target genes related to brain development and function. Based on the analysis, a total of 3,174 miR-3099 target genes were predicted. Those predicted by at least three algorithms (324 genes) were subjected to DAVID bioinformatics analysis to understand their overall functional themes and representation. The analysis revealed that nearly 70% of the target genes were expressed in the nervous system and a significant proportion were associated with transcriptional regulation and protein ubiquitination mechanisms. Comparison of in situ hybridization (ISH) expression patterns of miR-3099 in both published and in-house-generated ISH sections with the ISH sections of target genes from the Allen Brain Atlas identified 7 target genes (Dnmt3a, Gabpa, Gfap, Itga4, Lxn, Smad7, and Tbx18) having expression patterns complementary to miR-3099 in the developing and adult mouse brain samples. Of these, we validated Gfap as a direct downstream target of miR-3099 using the luciferase reporter gene system. In conclusion, we report the successful prediction and validation of Gfap as an miR-3099 target gene using a combination of bioinformatics resources with enrichment of annotations based on functional ontologies and a spatio-temporal expression dataset.


Neural Plasticity | 2016

Spatiotemporal Expression and Molecular Characterization of miR-344b and miR-344c in the Developing Mouse Brain

Jia-Wen Leong; Syahril Abdullah; King Hwa Ling; Pike See Cheah

MicroRNAs (miRNAs) are small noncoding RNA known to regulate brain development. The expression of two novel miRNAs, namely, miR-344b and miR-344c, was characterized during mouse brain developmental stages in this study. In situ hybridization analysis showed that miR-344b and miR-344c were expressed in the germinal layer during embryonic brain developmental stages. In contrast, miR-344b was not detectable in the adult brain while miR-344c was expressed exclusively in the adult olfactory bulb and cerebellar granular layer. Stem-loop RT-qPCR analysis of whole brain RNAs showed that expression of the miR-344b and miR-344c was increased as brain developed throughout the embryonic stage and maintained at adulthood. Further investigation showed that these miRNAs were expressed in adult organs, where miR-344b and miR-344c were highly expressed in pancreas and brain, respectively. Bioinformatics analysis suggested miR-344b and miR-344c targeted Olig2 and Otx2 mRNAs, respectively. However, luciferase experiments demonstrated that these miRNAs did not target Olig2 and Otx2 mRNAs. Further investigation on the locality of miR-344b and miR-344c showed that both miRNAs were localized in nuclei of immature neurons. In conclusion, miR-344b and miR-344c were expressed spatiotemporally during mouse brain developmental stages.

Collaboration


Dive into the Syahril Abdullah's collaboration.

Top Co-Authors

Avatar

Rozita Rosli

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajesh Ramasamy

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Pike See Cheah

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Siew Ching Ngai

International Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akram Al Abbar

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Jia-Wen Leong

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

King Hwa Ling

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge