Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sybille Allard is active.

Publication


Featured researches published by Sybille Allard.


Nano Letters | 2011

Ternary photovoltaic blends incorporating an all-conjugated donor-acceptor diblock copolymer.

Rhiannon Mulherin; Stefan Jung; Sven Huettner; Kerr Johnson; Peter Kohn; Michael Sommer; Sybille Allard; Ullrich Scherf; Neil C. Greenham

We present a new fully conjugated diblock copolymer, P3HT-b-PFTBTT, containing donor and acceptor blocks with suitably positioned energy levels for use in a solar cell. This is the first block copolymer to be based on an existing high-performance polymer:polymer blend. We observe phase separation of the blocks and self-assembly behavior. In ternary blends with the respective homopolymers the diblock copolymer introduces lateral nanostructure without restricting P3HT crystallization in the charge transport direction, resulting in standing lamellae. By adding the diblock to the homopolymer blend as a compatibilizer, we prevent phase separation at elevated temperatures and benefit from a dramatic increase in P3HT ordering, allowing us to demonstrate polymer blend photovoltaics where the nanostructure is thermodynamically, rather than kinetically, controlled.


Journal of Physical Chemistry Letters | 2012

On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of PCPDTBT/PC70BM: Influence of Solvent Additives

Steve Albrecht; Wolfram Schindler; Jona Kurpiers; Juliane Kniepert; James C. Blakesley; Ines Dumsch; Sybille Allard; Konstantinos Fostiropoulos; Ullrich Scherf; Dieter Neher

We have applied time-delayed collection field (TDCF) and charge extraction by linearly increasing voltage (CELIV) to investigate the photogeneration, transport, and recombination of charge carriers in blends composed of PCPDTBT/PC70BM processed with and without the solvent additive diiodooctane. The results suggest that the solvent additive has severe impacts on the elementary processes involved in the photon to collected electron conversion in these blends. First, a pronounced field dependence of the free carrier generation is found for both blends, where the field dependence is stronger without the additive. Second, the fate of charge carriers in both blends can be described with a rather high bimolecular recombination coefficients, which increase with decreasing internal field. Third, the mobility is three to four times higher with the additive. Both blends show a negative field dependence of mobility, which we suggest to cause bias-dependent recombination coefficients.


Advanced Materials | 2013

Semiconducting single-walled carbon nanotubes on demand by polymer wrapping

Widianta Gomulya; Guadalupe Díaz Costanzo; Elton Jose Figueiredo de Carvalho; Satria Zulkarnaen Bisri; Vladimir Derenskyi; Martin Fritsch; Nils Fröhlich; Sybille Allard; Pavlo Gordiichuk; Andreas Herrmann; Siewert J. Marrink; Maria Cristina dos Santos; U. Scherf; Maria Antonietta Loi

Efficient selection of semiconducting SWCNTs of large diameter range (0.8-1.6 nm) on demand is demonstrated. Different diameters of SWCNT are systematically selected by tuning the alkyl side-chain lengths of the wrapping polymers of similar backbone. The exceptional quality and high concentration of the SWCNTs is validated by the outstanding optical properties and the highly performing random network ambipolar field-effect transistors.


Nature Communications | 2012

Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics

Raphael Tautz; Enrico Da Como; Thomas Limmer; Jochen Feldmann; Hans-Joachim Egelhaaf; Elizabeth von Hauff; Vincent Lemaur; David Beljonne; Seyfullah Yilmaz; Ines Dumsch; Sybille Allard; Ullrich Scherf

Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.


Journal of Physical Chemistry Letters | 2014

Quantifying Charge Extraction in Organic Solar Cells: The Case of Fluorinated PCPDTBT

Steve Albrecht; John R. Tumbleston; Silvia Janietz; Ines Dumsch; Sybille Allard; Ullrich Scherf; Harald Ade; Dieter Neher

We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer.


Advanced Materials | 2014

Carbon nanotube network ambipolar field-effect transistors with 10(8) on/off ratio.

Vladimir Derenskyi; Widianta Gomulya; Jorge Mario Salazar Rios; Martin Fritsch; Nils Fröhlich; Stefan Jung; Sybille Allard; Satria Zulkarnaen Bisri; Pavlo Gordiichuk; Andreas Herrmann; Ullrich Scherf; Maria Antonietta Loi

Polymer wrapping is a highly effective method of selecting semiconducting carbon nanotubes and dispersing them in solution. Semi-aligned semiconducting carbon nanotube networks are obtained by blade coating, an effective and scalable process. The field-effect transistor (FET) performance can be tuned by the choice of wrapping polymer, and the polymer concentration modifies the FET transport characteristics, leading to a record on/off ratio of 10(8) .


Nature Communications | 2015

How intermolecular geometrical disorder affects the molecular doping of donor-acceptor copolymers

Daniele Di Nuzzo; Claudio Fontanesi; Rebecca Jones; Sybille Allard; Ines Dumsch; Ullrich Scherf; Elizabeth von Hauff; Stefan Schumacher; Enrico Da Como

Molecular doping of conjugated polymers represents an important strategy for improving organic electronic devices. However, the widely reported low efficiency of doping remains a crucial limitation to obtain high performance. Here we investigate how charge transfer between dopant and donor-acceptor copolymers is affected by the spatial arrangement of the dopant molecule with respect to the copolymer repeat unit. We p-dope a donor-acceptor copolymer and probe its charge-sensitive molecular vibrations in films by infrared spectroscopy. We find that, compared with a related homopolymer, a four times higher dopant/polymer molar ratio is needed to observe signatures of charges. By DFT methods, we simulate the vibrational spectra, moving the dopant along the copolymer backbone and finding that efficient charge transfer occurs only when the dopant is close to the donor moiety. Our results show that the donor-acceptor structure poses an obstacle to efficient doping, with the acceptor moiety being inactive for p-type doping.


Chemical Science | 2011

Photo-induced charge recombination kinetics in low bandgap PCPDTBT polymer:CdSe quantum dot bulk heterojunction solar cells

Josep Albero; Yunfei Zhou; Michael Eck; Frank Rauscher; Phenwisa Niyamakom; Ines Dumsch; Sybille Allard; Ullrich Scherf; Michael Krüger; Emilio Palomares

The interfacial charge transfer recombination processes under working conditions that limit the device performance in polymer:CdSe quantum dot bulk heterojunction hybrid solar cells have been measured. The recombination lifetimes for electrons and holes in the device show an exponential dependence in a similar way to that observed for other molecular based solar cells such as bulk heterojunction organic solar cells (OSC) and dye sensitized solar cells (DSSC). The implications of this unprecedented observation on the design of novel devices are discussed as well as the relationship between the charge accumulation in these devices under operation and the device open-circuit voltage.


Journal of Materials Chemistry | 2015

Ultra low band gap α,β-unsubstituted BODIPY-based copolymer synthesized by palladium catalyzed cross-coupling polymerization for near infrared organic photovoltaics

Benedetta M. Squeo; Nicola Gasparini; Tayebeh Ameri; Alex Palma-Cando; Sybille Allard; Vasilis G. Gregoriou; Christoph J. Brabec; Ullrich Scherf; Christos L. Chochos

A new ultra low band gap (LBG) α,β-unsubstituted BODIPY-based conjugated polymer has been synthesized by conventional cross coupling polymerization techniques (Stille cross coupling) for the first time. The polymer exhibits a panchromatic absorption spectrum ranging from 300 nm to 1100 nm and an optical band gap (Eoptg) of 1.15 eV, suitable for near infrared (NIR) organic photovoltaic applications as electron donor. Preliminary power conversion efficiency (PCE) of 1.1% in polymer : [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) 1 : 3 weight ratio bulk heterojunction (BHJ) solar cells has been achieved, demonstrating very interesting and promising photovoltaic characteristics, such as good fill factor (FF) and open circuit voltage (Voc). These results showing that by the proper chemical design, new α,β-unsubstituted BODIPY-based NIR copolymers can be developed in the future with suitable energy levels matching those of PC71BM towards more efficient NIR organic photovoltaics (OPVs).


Scientific Reports | 2017

Highly Efficient Solid-State Near-infrared Organic Light-Emitting Diodes incorporating A-D-A Dyes based on α,β -unsubstituted “BODIPY” Moieties

Andrea Zampetti; Alessandro Minotto; Benedetta M. Squeo; Vasilis G. Gregoriou; Sybille Allard; Ullrich Scherf; Christos L. Chochos; Franco Cacialli

We take advantage of a recent breakthrough in the synthesis of α,β-unfunctionalised 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) moieties, which we symmetrically conjugate with oligothienyls in an unexpectedly stable form, and produce a “metal-free” A-D-A (acceptor-donor-acceptor) oligomer emitting in the near-infrared (NIR) thanks to delocalisation of the BODIPY low-lying lowest unoccupied molecular orbital (LUMO) over the oligothienyl moieties, as confirmed by density functional theory (DFT). We are able to retain a PL efficiency of 20% in the solid state (vs. 30% in dilute solutions) by incorporating such a dye in a wider gap polyfluorene matrix and demonstrate organic light-emitting diodes (OLEDs) emitting at 720 nm. We achieve external quantum efficiencies (EQEs) up to 1.1%, the highest value achieved so far by a “metal-free” NIR-OLED not intentionally benefitting from triplet-triplet annihilation. Our work demonstrates for the first time the promise of A-D-A type dyes for NIR OLEDs applications thereby paving the way for further optimisation.

Collaboration


Dive into the Sybille Allard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ines Dumsch

University of Wuppertal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge