Sybille Krauss
German Center for Neurodegenerative Diseases
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sybille Krauss.
Human Molecular Genetics | 2011
Julieta Araujo; Peter Breuer; Susanne Dieringer; Sybille Krauss; Stephanie Dorn; Katrin Zimmermann; Alexander Pfeifer; Thomas Klockgether; Ullrich Wuellner; Bernd O. Evert
Ataxin-3 (ATXN3), the disease protein in spinocerebellar ataxia type 3 (SCA3), binds to target gene promoters and modulates transcription by interaction with transcriptional regulators. Here, we show that ATXN3 interacts with the forkhead box O (FOXO) transcription factor FOXO4 and activates the FOXO4-dependent transcription of the manganese superoxide dismutase (SOD2) gene. Upon oxidative stress, ATXN3 and FOXO4 translocate to the nucleus, concomitantly bind to the SOD2 gene promoter and increase the expression of the antioxidant enzyme SOD2. Compared with normal ATXN3, mutant ATXN3 has a reduced capability to activate the FOXO4-mediated SOD2 expression and interferes with binding of FOXO4 to the SOD2 gene promoter. These findings are consistent with a downregulation of SOD2 in pontine brain tissue and lymphoblastoid cell (LC) lines of SCA3 patients. In response to oxidative stress, LCs from SCA3 patients show a specific impairment to upregulate SOD2 expression in correlation with a significantly increased formation of reactive oxygen species and cytotoxicity. The impairment to increase the expression of SOD2 under oxidative stress conditions is associated with a significantly reduced binding of FOXO4 to the SOD2 gene promoter in SCA3-LCs. Finally and consistent with a regulatory role of ATXN3 in SOD2 expression, knockdown of endogenous ATXN3 by RNA interference represses the expression of SOD2. These findings support that ATXN3 plays an important role in regulating the FOXO4-dependent antioxidant stress response via SOD2 and suggest that a decreased antioxidative capacity and increased susceptibility towards oxidative stress contributes to neuronal cell death in SCA3.
Acta Neuropathologica | 2015
Jens Wagner; Sybille Krauss; Song Shi; Sergey Ryazanov; Julia Steffen; Carolin Miklitz; Andrei Leonov; Alexander Kleinknecht; Bettina Göricke; Jochen H. Weishaupt; Daniel Weckbecker; Anne M. Reiner; Wolfgang Zinth; Johannes Levin; Dan Ehninger; Stefan Remy; Hans A. Kretzschmar; Christian Griesinger; Armin Giese; Martin Fuhrmann
Pathological tau aggregation leads to filamentous tau inclusions and characterizes neurodegenerative tauopathies such as Alzheimer’s disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Tau aggregation coincides with clinical symptoms and is thought to mediate neurodegeneration. Transgenic mice overexpressing mutant human P301S tau exhibit many neuropathological features of human tauopathies including behavioral deficits and increased mortality. Here, we show that the di-phenyl-pyrazole anle138b binds to aggregated tau and inhibits tau aggregation in vitro and in vivo. Furthermore, anle138b treatment effectively ameliorates disease symptoms, increases survival time and improves cognition of tau transgenic PS19 mice. In addition, we found decreased synapse and neuron loss accompanied by a decreased gliosis in the hippocampus. Our results suggest that reducing tau aggregates with anle138b may represent an effective and promising approach for the treatment of human tauopathies.
International Journal of Cell Biology | 2013
Sybille Krauss; Ina Vorberg
Prions are unconventional infectious agents that are composed of misfolded aggregated prion protein. Prions replicate their conformation by template-assisted conversion of the endogenous prion protein PrP. Templated conversion of soluble proteins into protein aggregates is also a hallmark of other neurodegenerative diseases. Alzheimers disease or Parkinsons disease are not considered infectious diseases, although aggregate pathology appears to progress in a stereotypical fashion reminiscent of the spreading behavior ofmammalian prions. While basic principles of prion formation have been studied extensively, it is still unclear what exactly drives PrP molecules into an infectious, self-templating conformation. In this review, we discuss crucial steps in the life cycle of prions that have been revealed in ex vivo models. Importantly, the persistent propagation of prions in mitotically active cells argues that cellular processes are in place that not only allow recruitment of cellular PrP into growing prion aggregates but also enable the multiplication of infectious seeds that are transmitted to daughter cells. Comparison of prions with other protein aggregates demonstrates that not all the characteristics of prions are equally shared by prion-like aggregates. Future experiments may reveal to which extent aggregation-prone proteins associated with other neurodegenerative diseases can copy the replication strategies of prions.
Frontiers in Cellular Neuroscience | 2016
Nadine Griesche; Judith Schilling; Stephanie Weber; Marlena Rohm; Verena Pesch; Frank Matthes; Georg Auburger; Sybille Krauss
Expansion of CAG repeats, which code for the disease-causing polyglutamine protein, is a common feature in polyglutamine diseases. RNA-mediated mechanisms that contribute to neuropathology in polyglutamine diseases are important. RNA-toxicity describes a phenomenon by which the mutant CAG repeat RNA recruits RNA-binding proteins, thereby leading to aberrant function. For example the MID1 protein binds to mutant huntingtin (HTT) RNA, which is linked to Huntingtons disease (HD), at its CAG repeat region and induces protein synthesis of mutant protein. But is this mechanism specific to HD or is it a common mechanism in CAG repeat expansion disorders? To answer this question, we have analyzed the interaction between MID1 and three other CAG repeat mRNAs, Ataxin2 (ATXN2), Ataxin3 (ATXN3), and Ataxin7 (ATXN7), that all differ in the sequence flanking the CAG repeat. We show that ATXN2, ATXN3, and ATXN7 bind to MID1 in a CAG repeat length-dependent manner. Furthermore, we show that functionally, in line with what we have previously observed for HTT, the binding of MID1 to ATXN2, ATXN3, and ATXN7 mRNA induces protein synthesis in a repeat length-dependent manner. Our data suggest that regulation of protein translation by the MID1 complex is a common mechanism for CAG repeat containing mRNAs.
Molecular Neurodegeneration | 2017
Ebru Ercan; Sameh Eid; Christian Weber; Alexandra Kowalski; Maria Bichmann; Annika Behrendt; Frank Matthes; Sybille Krauss; Peter Reinhardt; Simone Fulle; Dagmar E. Ehrnhoefer
BackgroundTau is a microtubule-binding protein, which is subject to various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Aberrant PTMs such as hyperphosphorylation result in tau aggregation and the formation of neurofibrillary tangles, which are a hallmark of Alzheimer’s disease (AD). In order to study the importance of PTMs on tau function, antibodies raised against specific modification sites are widely used. However, quality control of these antibodies is lacking and their specificity for particular modifications is often unclear.MethodsIn this study, we first designed an online tool called ‘TauPTM’, which enables the visualization of PTMs and their interactions on human tau. Using TauPTM, we next searched for commercially available antibodies against tau PTMs and characterized their specificity by peptide array, immunoblotting, electrochemiluminescence ELISA and immunofluorescence technologies.ResultsWe demonstrate that commercially available antibodies can show a significant lack of specificity, and PTM-specific antibodies in particular often recognize non-modified versions of the protein. In addition, detection may be hindered by other PTMs in close vicinity, complicating the interpretation of results. Finally, we compiled a panel of specific antibodies and show that they are useful to detect PTM-modified endogenous tau in hiPSC-derived neurons and mouse brains.ConclusionThis study has created a platform to reliably and robustly detect changes in localization and abundance of post-translationally modified tau in health and disease. A web-based version of TauPTM is fully available at http://www.tauptm.org.
ACS Chemical Neuroscience | 2018
Frank Matthes; Serena Massari; Anna Bochicchio; Kenji Schorpp; Judith Schilling; Stephanie Weber; Nina Offermann; Jenny Desantis; Erich E. Wanker; Paolo Carloni; Kamyar Hadian; Oriana Tabarrini; Giulia Rossetti; Sybille Krauss
Expanded CAG trinucleotide repeats in Huntingtons disease (HD) are causative for neurotoxicity. The mutant CAG repeat RNA encodes neurotoxic polyglutamine proteins and can lead to a toxic gain of function by aberrantly recruiting RNA-binding proteins. One of these is the MID1 protein, which induces aberrant Huntingtin (HTT) protein translation upon binding. Here we have identified a set of CAG repeat binder candidates by in silico methods. One of those, furamidine, reduces the level of binding of HTT mRNA to MID1 and other target proteins in vitro. Metadynamics calculations, fairly consistent with experimental data measured here, provide hints about the binding mode of the ligand. Importantly, furamidine also decreases the protein level of HTT in a HD cell line model. This shows that small molecules masking RNA-MID1 interactions may be active against mutant HTT protein in living cells.
eLife | 2018
Isabelle Arnoux; Michael Willam; Nadine Griesche; Jennifer Krummeich; Hirofumi Watari; Nina Offermann; Stephanie Weber; Partha Narayan Dey; Changwei Chen; Olivia Monteiro; Sven Buettner; Katharina Meyer; Daniele Bano; Konstantin Radyushkin; Jeremy J. Lambert; Erich E. Wanker; Axel Methner; Sybille Krauss; Susann Schweiger; Albrecht Stroh
Catching primal functional changes in early, ‘very far from disease onset’ (VFDO) stages of Huntington’s disease is likely to be the key to a successful therapy. Focusing on VFDO stages, we assessed neuronal microcircuits in premanifest Hdh150 knock-in mice. Employing in vivo two-photon Ca2+ imaging, we revealed an early pattern of circuit dysregulation in the visual cortex - one of the first regions affected in premanifest Huntington’s disease - characterized by an increase in activity, an enhanced synchronicity and hyperactive neurons. These findings are accompanied by aberrations in animal behavior. We furthermore show that the antidiabetic drug metformin diminishes aberrant Huntingtin protein load and fully restores both early network activity patterns and behavioral aberrations. This network-centered approach reveals a critical window of vulnerability far before clinical manifestation and establishes metformin as a promising candidate for a chronic therapy starting early in premanifest Huntington’s disease pathogenesis long before the onset of clinical symptoms.
Alzheimers & Dementia | 2015
Frank Matthes; Moritz M. Hettich; Devon P. Ryan; Dan Ehninger; Sybille Krauss
MicroRNA | 2018
Sybille Krauss; Rohit Nalavade; Stephanie Weber; Katlynn Carter; Bernd O. Evert
Cell death discovery | 2018
Frank Matthes; Moritz M. Hettich; Judith Schilling; Diana Flores-Dominguez; Nelli Blank; Thomas Wiglenda; Alexander Buntru; Hanna Wolf; Stephanie Weber; Ina Vorberg; Alina Dagane; Gunnar Dittmar; Erich E. Wanker; Dan Ehninger; Sybille Krauss