Sydney R. Murphy
University of Mississippi Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sydney R. Murphy.
Hypertension | 2009
Babbette LaMarca; Marc Parrish; Lillian Ray; Sydney R. Murphy; Lyndsay Roberts; Porter H. Glover; Gerd Wallukat; Katrin Wenzel; Kathy Cockrell; James N. Martin; Michael J. Ryan; Ralf Dechend
Agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA) and endothelin -1 (ET-1) are suggested to be important links between placental ischemia and hypertension during preeclampsia. Activation of the angiotensin II type 1 receptor (AT1R) increases endothelial cell production of ET-1; however, the importance of ET-1 in response to AT1-AA–mediated AT1 R activation during preeclampsia is unknown. Furthermore, the role of AT1-AA–mediated increases in blood pressure during pregnancy remains unclear. The objective of this study was to test the hypothesis that AT1-AA, increased to levels observed in preeclamptic women and placental ischemic rats, increases mean arterial pressure (MAP) by activation of the ET-1 system. Chronic infusion of purified rat AT1-AA into normal pregnant (NP) rats for 7 days increased AT1-AA from 0.68±0.5 to 10.88±1.1 chronotropic units (P<0.001). The increased AT1-AA increased MAP from 99±1 to 119±2 mm Hg (P<0.001). The hypertension was associated with significant increases in renal cortices (11-fold) and placental (4-fold) ET-1. To determine whether ET-1 mediates AT1-AA–induced hypertension, pregnant rats infused with AT1-AA and NP rats were treated with an ETA receptor antagonist. MAP was 100±1 mm Hg in AT1-AA+ETA antagonist-treated rats versus 98±2 mm Hg in ETA antagonist-treated rats. Collectively, these data support the hypothesis that one potential pathway whereby AT1-AAs increase blood pressure during pregnancy is by an ET-1–dependent mechanism.
Hypertension | 2010
Sydney R. Murphy; Babbette LaMarca; Kathy Cockrell; Joey P. Granger
Although soluble fms-like tyrosine kinase 1 (sFlt-1), an antagonist of vascular endothelial growth factor and placental growth factor, has been implicated in the pathogenesis of hypertension during preeclampsia, the mechanisms whereby enhanced sFlt-1 production leads to hypertension remain unclear. Both sFlt-1 and endothelin 1 productions are elevated in women with preeclampsia and in placental ischemic animal models of preeclampsia; however, the importance of endothelin 1 and sFlt-1 interactions in the control of blood pressure during pregnancy is unknown. The purpose of this study was to determine the role of endothelin 1 in mediating sFlt-1–induced hypertension in pregnant rats. To achieve this goal, sFlt-1 (3.7 &mgr;g/kg per day for 6 days) was infused into normal pregnant rats and pregnant rats treated with a selective endothelin type A receptor antagonist, ABT 627 (5 mg/kg per day for 6 days). Plasma concentration of sFlt-1 increased from 735±34 pg/mL in normal pregnant rats to 2498±645 pg/mL (P<0.05) with infusion of sFlt-1. Arterial pressure increased from 100±1 mm Hg in normal pregnant rats to 122±3 mm Hg (P<0.05) in sFlt-1–infused rats. Chronic increases in plasma sFlt-1 in normal pregnant rats increased preproendothelin mRNA expression in the renal cortices by ≈3-fold. In addition, chronic endothelin type A receptor blockade completely abolished the blood pressure response to sFlt-1 in pregnant rats (104±3 versus 100±1 mm Hg; P<0.05), whereas the endothelin A receptor antagonist had no effect on arterial pressure in NP rats (105±2 versus 100±1 mm Hg). In conclusion, this study demonstrates that endothelin 1, via endothelin type A receptor activation, plays an important role in mediating the hypertension in response to excess sFlt-1 during pregnancy.
Journal of Cardiovascular Pharmacology | 2010
Jan Michael Williams; Sydney R. Murphy; Marilyn Burke; Richard J. Roman
Arachidonic acid is metabolized by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE), which plays an important role in the regulation of renal function, vascular tone, and the long-term control of arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, and upregulation of the production of this compound contributes to the elevation in oxidative stress and endothelial dysfunction and the increase in peripheral vascular resistance associated with some forms of hypertension. In kidney, 20-HETE inhibits Na+ transport in the proximal tubule and thick ascending loop of Henle, and deficiencies in the renal formation of 20-HETE contributes to sodium retention and development of some salt-sensitive forms of hypertension. 20-HETE also has renoprotective actions and opposes the effects of transforming growth factor β to promote proteinuria and renal end organ damage in hypertension. Several new inhibitors of the synthesis of 20-HETE and 20-HETE agonists and antagonists have recently been developed. These compounds along with peroxisome proliferator-activated receptor-α agonists that induce the renal formation of 20-HETE seem to have promise as antihypertensive agents. This review summarizes the rationale for the development of drugs that target the 20-HETE pathway for the treatment of hypertension and associated cardiovascular complications.
American Journal of Hypertension | 2010
Marc Parrish; Sydney R. Murphy; Sarah Rutland; Kedra Wallace; Katrin Wenzel; Gerd Wallukat; Sharon Keiser; Lillian Ray; Ralf Dechend; James N. Martin; Joey P. Granger; Babbette LaMarca
BACKGROUND Preeclampsia is considered a disease of immunological origin associated with abnormalities in inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha), and activated lymphocytes secreting autoantibodies to the angiotensin II receptor (AT1-AA). Recent studies have also demonstrated that an imbalance of angiogenic factors, soluble fms-like tyrosine kinase (sFlt-1), and sEndoglin, exists in preeclampsia; however, the mechanisms that initiate their overproduction are unclear. METHODS To determine the role of immune regulation of these factors, circulating and placental sFlt-1 and/or sEndoglin was examined from pregnant rats chronically treated with TNF-alpha or AT1-AA. On day 19 of gestation blood pressure was analyzed and serum and tissues were collected. Placental villous explants were excised and cultured on matrigel coated inserts for 24 h and sFlt-1 and sEndoglin was measured from media. RESULTS In response to TNF-alpha-induced hypertension, sFlt-1 increased from 180 +/- 5 to 2,907 +/- 412 pg/ml. sFlt-1 was also increased from cultured placental explants of TNF-alpha induced hypertensive pregnant rats (n = 12) (2,544 +/- 1,132 pg/ml) vs. explants from normal pregnant (NP) rats (n = 12) (2,189 +/- 586 pg/ml) where as sEng was undetectable. Circulating sFlt-1 increased from 245 +/- 38 to 3,920 +/- 798 pg/ml in response to AT1-AA induced hypertension. sFlt-1 levels were higher (3,400 +/- 350 vs. 2,480 +/- 900 pg/ml) in placental explants from AT1-AA infused rats (n = 12) than NP rats (n = 7). In addition, sEndoglin increased from 30 +/- 2.7 to 44 +/- 3.3 pg/ml (P < 0.047) in AT1-AA infused rats but was undetectable in the media of the placental explants. CONCLUSIONS These data suggest that immune factors may serve as an important stimulus for both sFlt-1 and sEndoglin production in response to placental ischemia.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013
Sydney R. Murphy; Babbette LaMarca; Marc Parrish; Kathy Cockrell; Joey P. Granger
Although abnormal soluble fms-like tyrosine kinase-1 (sFlt-1) production is thought to be an important factor in the pathogenesis of preeclampsia (PE), the mechanisms that regulate the production of sFlt-1 during PE are unclear. While our laboratory has shown tumor necrosis factor-α (TNF-α) and sFlt-1 to be elevated in pregnant rats in response to placental ischemia, the importance of TNF-α in the regulation of sFlt-1 production is unknown. Therefore, the purpose of this study was to determine the role of TNF-α in mediating the increase in sFlt-1 in response to placental ischemia or hypoxia. Reductions in uterine perfusion pressure in pregnant rats significantly increased plasma levels of sFlt-1 and tended to increase TNF-α, an effect markedly attenuated by pretreatment with a TNF-α inhibitor etanercept (0.4 mg/kg). To further assess chronic interactions between TNF-α and sFlt-1, we examined a chronic effect of TNF-α infusion (50 ng/day) into normal pregnant rats to increase plasma sFlt-1 levels, as well as the effects of acute hypoxia on placental sFlt-1 production in the absence and presence of TNF-α blockade. Placental explants exposed to hypoxic conditions had enhanced TNF-α levels versus normoxic conditions, as well as increased sFlt-1 production. Pretreatment of placental explants with etanercept (15 μM) significantly reduced TNF-α levels in response to hypoxia but did not attenuate sFlt-1 production. These data suggest that while TNF-α may not play an important role in stimulating sFlt-1 production in response to acute hypoxia, a more chronic hypoxia, or placental ischemia may be an important stimulus for enhanced sFlt-l production.
Gender Medicine | 2008
Babbette LaMarca; Barbara T. Alexander; Jeffery S. Gilbert; Michael J. Ryan; Mona Sedeek; Sydney R. Murphy; Joey P. Granger
BACKGROUND Preeclampsia is new-onset hypertension with proteinuria during pregnancy. The initiating event in preeclampsia has been postulated to involve reduced placental perfusion, which leads to widespread dysfunction of the maternal vascular endothelium. OBJECTIVE The main objective of this brief review was to highlight some of the recent advances in our understanding of the mechanisms whereby the endothelin (ET) system, via ET type A (ETA) receptor activation, modulates blood pressure in preeclamptic women and in animal models of pregnancy-related hypertension. METHODS This review focused on the role of ET and tumor necrosis factor-alpha (TNF-alpha) in preeclampsia, with emphasis on the pathophysiology of hypertension in response to placental ischemia in animal models of pregnancy. Relevant published data were identified by searching PubMed and supplemented with contributions from our laboratory. RESULTS Studies in preeclamptic women indicate that their hypertension is associated with increases in ET synthesis. Recent studies in pregnant rats indicate that the ET system is activated in response to reductions in uterine perfusion pressure and to chronic elevations in serum TNF-alpha concentrations. In these 2 animal models, the findings also suggest that ET A receptor activation may play a role in mediating hypertension. CONCLUSIONS Although recent studies in animal models implicate an important role for the ET system in preeclampsia, the usefulness of selective ET A receptor antagonists for the treatment of hypertension in women with preeclampsia remains unclear. This important question will not be answered until well-controlled clinical studies using specific ET A receptor antagonists are conducted for women with preeclampsia.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Jan Michael Williams; Fan Fan; Sydney R. Murphy; Carlos Schreck; Jozef Lazar; Howard J. Jacob; Richard J. Roman
This study examined whether substitution of chromosome 5 containing the CYP4A genes from Brown Norway rat onto the Dahl S salt-sensitive (SS) genetic background upregulates the renal production of 20-HETE and attenuates the development of hypertension. The expression of CYP4A protein and the production of 20-HETE were significantly higher in the renal cortex and outer medulla of SS.5(BN) (chromosome 5-substituted Brown Norway rat) consomic rats fed either a low-salt (LS) or high-salt (HS) diet than that seen in SS rats. The increase in the renal production of 20-HETE in SS.5(BN) rats was associated with elevated expression of CYP4A2 mRNA. MAP measured by telemetry rose from 117 ± 1 to 183 ± 5 mmHg in SS rats fed a HS diet for 21 days, but only increased to 151 ± 5 mmHg in SS.5(BN) rats. The pressure-natriuretic and diuretic responses were twofold higher in SS.5(BN) rats compared with SS rats. Protein excretion rose to 354 ± 17 mg/day in SS rats fed a HS diet for 21 days compared with 205 ± 13 mg/day in the SS.5(BN) rats, and the degree of glomerular injury was reduced. Baseline glomerular capillary pressure (Pgc) was similar in SS.5(BN) rats (43 ± 1 mmHg) and Dahl S (44 ± 2 mmHg) rats. However, Pgc increased to 59 ± 3 mmHg in SS rats fed a HS diet for 7 days, while it remained unaltered in SS.5(BN) rats (43 ± 2 mmHg). Chronic administration of an inhibitor of the synthesis of 20-HETE (HET0016, 10 mg·kg(-1)·day(-1) iv) reversed the antihypertensive phenotype seen in the SS.5(BN) rats. These findings indicate that the transfer of chromosome 5 from the BN rat onto the SS genetic background increases the renal expression of CYP4A protein and the production of 20-HETE and that 20-HETE contributes to the antihypertensive and renoprotective effects seen in the SS.5(BN) consomic strain.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Sydney R. Murphy; Babbette LaMarca; Kathy Cockrell; Marietta Arany; Joey P. Granger
While soluble fms-like tyrosine kinase-1 (sFlt-1) and endothelin-1 (ET-1) have been implicated in the pathogenesis of preeclampsia (PE), the mechanisms whereby increased sFlt-1 leads to enhanced ET-1 production and hypertension remain unclear. It is well documented that nitric oxide (NO) production is reduced in PE; however, whether a reduction in NO synthesis plays a role in increasing ET-1 and blood pressure in response to chronic increases in plasma sFlt-1 remains unclear. The purpose of this study was to determine the role of reduced NO synthesis in the increase in blood pressure and ET-1 in response to sFlt-1 in pregnant rats. sFlt-1 was infused into normal pregnant (NP) Sprague-Dawley rats (3.7 μg·kg(-1)·day(-1) for 6 days beginning on day 13 of gestation) treated with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (100 mg/l for 4 days) or supplemented with 2% L-Arg (in drinking water for 6 days beginning on day 15 of gestation). Infusion of sFlt-1 into NP rats significantly elevated mean arterial pressure compared with control NP rats: 116 ± 2 vs. 103 ± 1 mmHg (P < 0.05). NO synthase inhibition had no effect on the blood pressure response in sFlt-1 hypertensive pregnant rats (121 ± 3 vs. 116 ± 2 mmHg), while it significantly increased mean arterial pressure in NP rats (128 ± 4 mmHg, P < 0.05). In addition, NO production was reduced ∼70% in isolated glomeruli from sFlt-1 hypertensive pregnant rats compared with NP rats (P < 0.05). Furthermore, prepro-ET-1 in the renal cortex was increased ∼3.5-fold in sFlt-1 hypertensive pregnant rats compared with NP rats. Supplementation with L-Arg decreased the sFlt-1 hypertension (109 ± 3 mmHg, P < 0.05) but had no effect on the blood pressure response in NP rats (109 ± 3 mmHg) and abolished the enhanced sFlt-1-induced renal cortical prepro-ET expression. In conclusion, a reduction in NO synthesis may play an important role in the enhanced ET-1 production in response to sFlt-1 hypertension in pregnant rats.
Prostaglandins & Other Lipid Mediators | 2013
Ying Ge; Sydney R. Murphy; Yan Lu; John R. Falck; Ruisheng Liu; Richard J. Roman
Previous studies have indicated that 20-hydroxyeicosatetraeonic acid (20-HETE) modulates vascular tone in large cerebral and renal arteries through inhibition of the large conductance, calcium sensitive potassium (BK) channel activity. However, the role of 20-HETE in modulating tubuloglomerular feedback (TGF) and the myogenic response in the afferent arteriole (Af-Art) is unknown. The present study examined the effects of inhibitors of the synthesis and action of 20-HETE on the myogenic and TGF responses of isolated rabbit and mouse Af-Arts. Luminal diameter decreased by 9.2±0.5% in mice and 8.9±1.3% in rabbit Af-Art when the perfusion pressure was increased from 60 to 120 mmHg. Administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM), or a selective 20-HETE antagonist, 6, 15-20-hydroxyeicosadienoic acid (6, 15-20-HEDE, 10 μM) completely blocked the myogenic response of both rabbit and mouse Af-Art, while addition of 5, 14-20-HEDE (10 μM), a 20-HETE agonist, restored the myogenic response in vessels treated with HET0016. Increases in NaCl concentration from 10 to 80 mM of the solution perfusing the macula densa constricted the Af-Art of rabbits by 6.0±1.4 μm (n=5). Addition of a 20-HETE agonist to the tubular perfusate potentiated the TGF-mediated vasoconstrictor response. This response was blocked by addition of a 20-HETE antagonist (6, 15-20-HEDE, 10 μM) to the vascular perfusate. These studies indicate that locally produced 20-HETE plays an important role in modulating the myogenic and TGF responsiveness of the Af-Art and may help explain how deficiencies in the renal formation of 20-HETE could promote the development of hypertension induced glomerular injury.
Physiological Reports | 2014
Junie P. Warrington; Fan Fan; Sydney R. Murphy; Richard J. Roman; Heather A. Drummond; Joey P. Granger; Michael J. Ryan
Cerebrovascular events contribute to ~40% of preeclampsia/eclampsia‐related deaths, and neurological symptoms are common among preeclamptic patients. We previously reported that placental ischemia, induced by reducing utero‐placental perfusion pressure, leads to impaired myogenic reactivity and cerebral edema in the pregnant rat. Whether the impaired myogenic reactivity is associated with altered cerebral blood flow (CBF) autoregulation and the edema is due to altered blood–brain barrier (BBB) permeability remains unclear. Therefore, we tested the hypothesis that placental ischemia leads to impaired CBF autoregulation and a disruption of the BBB. CBF autoregulation, measured in vivo by laser Doppler flowmetry, was significantly impaired in placental ischemic rats. Brain water content was increased in the anterior cerebrum of placental ischemic rats and BBB permeability, assayed using the Evans blue extravasation method, was increased in the anterior cerebrum. The expression of the tight junction proteins: claudin‐1 was increased in the posterior cerebrum, while zonula occludens‐1, and occludin, were not significantly altered in either the anterior or posterior cerebrum. These results are consistent with the hypothesis that placental ischemia mediates anterior cerebral edema through impaired CBF autoregulation and associated increased transmission of pressure to small vessels that increases BBB permeability leading to cerebral edema.