Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Syed Monem Rizvi is active.

Publication


Featured researches published by Syed Monem Rizvi.


Trends in Immunology | 2008

MHC class I assembly: out and about

Malini Raghavan; Natasha Del Cid; Syed Monem Rizvi; Larry Robert Peters

The assembly of major histocompatibility complex (MHC) class I molecules with peptides is orchestrated by several assembly factors including the transporter associated with antigen processing (TAP) and tapasin, the endoplasmic reticulum (ER) oxido-reductases ERp57 and protein disulfide isomerase (PDI), the lectin chaperones calnexin and calreticulin, and the ER aminopeptidase (ERAAP). Typically, MHC class I molecules present endogenous antigens to cytotoxic T lymphocytes (CTLs). However, the initiation of CD8(+) T-cell responses against many pathogens and tumors also requires the presentation of exogenous antigens by MHC class I molecules. We discuss recent developments relating to interactions and mechanisms of function of the various assembly factors and pathways by which exogenous antigens access MHC class I molecules.


Journal of Biological Chemistry | 2010

Modes of Calreticulin Recruitment to the Major Histocompatibility Complex Class I Assembly Pathway

Natasha Del Cid; Elise Jeffery; Syed Monem Rizvi; Ericca Stamper; Larry Robert Peters; William Clay Brown; Chester J. Provoda; Malini Raghavan

Major histocompatibility complex (MHC) class I molecules are ligands for T-cell receptors of CD8+ T cells and inhibitory receptors of natural killer cells. Assembly of the heavy chain, light chain, and peptide components of MHC class I molecules occurs in the endoplasmic reticulum (ER). Specific assembly factors and generic ER chaperones, collectively called the MHC class I peptide loading complex (PLC), are required for MHC class I assembly. Calreticulin has an important role within the PLC and induces MHC class I cell surface expression, but the interactions and mechanisms involved are incompletely understood. We show that interactions with the thiol oxidoreductase ERp57 and substrate glycans are important for the recruitment of calreticulin into the PLC and for its functional activities in MHC class I assembly. The glycan and ERp57 binding sites of calreticulin contribute directly or indirectly to complexes between calreticulin and the MHC class I assembly factor tapasin and are important for maintaining steady-state levels of both tapasin and MHC class I heavy chains. A number of destabilizing conditions and mutations induce generic polypeptide binding sites on calreticulin and contribute to calreticulin-mediated suppression of misfolded protein aggregation in vitro. We show that generic polypeptide binding sites per se are insufficient for stable recruitment of calreticulin to PLC substrates in cells. However, such binding sites could contribute to substrate stabilization in a step that follows the glycan and ERp57-dependent recruitment of calreticulin to the PLC.


Journal of Immunology | 2014

Distinct Assembly Profiles of HLA-B Molecules

Syed Monem Rizvi; Nasir Salam; Jie Geng; Ying Qi; Jay H. Bream; Priya Duggal; Shehnaz K. Hussain; Jeremy J. Martinson; Steven M. Wolinsky; Mary Carrington; Malini Raghavan

MHC class I polymorphisms are known to influence outcomes in a number of infectious diseases, cancers, and inflammatory diseases. Human MHC class I H chains are encoded by the HLA-A, HLA-B, and HLA-C genes. These genes are highly polymorphic, with the HLA-B locus being the most variable. Each HLA class I protein binds to a distinct set of peptide Ags, which are presented to CD8+ T cells. HLA-disease associations have been shown in some cases to link to the peptide-binding characteristics of individual HLA class I molecules. In this study, we show that polymorphisms at the HLA-B locus profoundly influence the assembly characteristics of HLA-B molecules and the stabilities of their peptide-deficient forms. In particular, dependence on the assembly factor tapasin is highly variable, with frequent occurrence of strongly tapasin-dependent or independent allotypes. Several polymorphic HLA-B residues located near the C-terminal end of the peptide are key determinants of tapasin-independent assembly. In vitro refolded forms of tapasin-independent allotypes assemble more readily with peptides compared to tapasin-dependent allotypes that belong to the same supertype, and, during refolding, reduced aggregation of tapasin-independent allotypes is observed. Paradoxically, in HIV-infected individuals, greater tapasin-independent HLA-B assembly confers more rapid progression to death, consistent with previous findings that some HLA-B allotypes shown to be tapasin independent are associated with rapid progression to multiple AIDS outcomes. Together, these findings demonstrate significant variations in the assembly of HLA-B molecules and indicate influences of HLA-B–folding patterns upon infectious disease outcomes.


Traffic | 2010

Mechanisms of Function of Tapasin, a Critical Major Histocompatibility Complex Class I Assembly Factor

Syed Monem Rizvi; Malini Raghavan

For their efficient assembly in the endoplasmic reticulum (ER), major histocompatibility complex (MHC) class I molecules require the specific assembly factors transporter associated with antigen processing (TAP) and tapasin, as well as generic ER folding factors, including the oxidoreductases ERp57 and protein disulfide isomerase (PDI), and the chaperone calreticulin. TAP transports peptides from the cytosol into the ER. Tapasin promotes the assembly of MHC class I molecules with peptides. The formation of disulfide‐linked conjugates of tapasin with ERp57 is suggested to be crucial for tapasin function. Important functional roles are also suggested for the tapasin transmembrane and cytoplasmic domains, sites of tapasin interaction with TAP. We show that interactions of tapasin with both TAP and ERp57 are correlated with strong MHC class I recruitment and assembly enhancement. The presence of the transmembrane/cytosolic regions of tapasin is critical for efficient tapasin–MHC class I binding in interferon‐γ‐treated cells, and contributes to an ERp57‐independent mode of MHC class I assembly enhancement. A second ERp57‐dependent mode of tapasin function correlates with enhanced MHC class I binding to tapasin and calreticulin. We also show that PDI binds to TAP in a tapasin‐independent manner, but forms disulfide‐linked conjugates with soluble tapasin. Thus, full‐length tapasin is important for enhancing recruitment of MHC class I molecules and increasing specificity of tapasin–ERp57 conjugation. Furthermore, tapasin or the TAP/tapasin complex has an intrinsic ability to recruit MHC class I molecules and promote assembly, but also uses generic folding factors to enhance MHC class I recruitment and assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Calreticulin recognizes misfolded HLA-A2 heavy chains

Laura Mancino; Syed Monem Rizvi; Philip E. Lapinski; Malini Raghavan

Our studies investigated functional interactions between calreticulin, an endoplasmic reticulum chaperone, and major histocompatibility complex (MHC) class I molecules. Using in vitro thermal aggregation assays, we established that calreticulin can inhibit heat-induced aggregation of soluble, peptide-deficient HLA-A2 purified from supernatants of insect cells. The presence of HLA-A2-specific peptides also inhibits heat-induced aggregation. Inhibition of heat-induced aggregation of peptide-deficient HLA-A2 by calreticulin correlates with a rescue of the HLA-A2 heavy chain from precipitation, by forming high-molecular-weight complexes with calreticulin. Complex formation between HLA-A2 heavy chains and calreticulin occurs at 50°C but not 37°C, suggesting polypeptide-based interactions between the HLA-A2 heavy chain and calreticulin. Once complexes are formed, the addition of peptide is not sufficient to trigger efficient assembly of heavy chain/β2m/peptide complexes. Using a fluorescent peptide-based binding assay, we show that calreticulin does not enhance peptide binding by HLA-A2 at 37°C. We also show that calreticulin itself is converted to oligomeric species on exposure to 37°C or higher temperatures, and that oligomeric forms of calreticulin are active in inhibiting thermal aggregation of peptide-deficient HLA-A2. Taken together, these results suggest that calreticulin functions in the recognition of misfolded MHC class I heavy chains in the endoplasmic reticulum. However, in the absence of other endoplasmic reticulum components, calreticulin by itself does not enhance the assembly of misfolded MHC class I heavy chains with β2m and peptides.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Direct peptide-regulatable interactions between MHC class I molecules and tapasin

Syed Monem Rizvi; Malini Raghavan

Tapasin (Tpn) has been implicated in multiple steps of the MHC class I assembly pathway, but the mechanisms of function remain incompletely understood. Using purified proteins, we could demonstrate direct binding of Tpn to peptide-deficient forms of MHC class I molecules at physiological temperatures. Tpn also bound to M10.5, a pheromone receptor-associated MHC molecule that has an open and empty groove and that shares significant sequence identity with class I sequences. Two types of MHC class I–Tpn complexes were detectable in vitro depending on the input proteins; those depleted in β2m, and those containing β2m. Both were competent for subsequent assembly with peptides, but the latter complexes assembled more rapidly. Thus, the assembly rate of Tpn-associated class I was determined by the conditions under which Tpn–MHC class I complexes were induced. Peptide loading of class I inhibited Tpn–class I-binding interactions, and peptide-depletion enhanced binding. In combination with β2m, certain peptides induced efficient dissociation of preformed Tpn–class I complexes. Together, these studies demonstrate direct Tpn–MHC class I interactions and preferential binding of empty MHC class I by Tpn, and that the Tpn–class I interaction is regulated by both β2m and peptide. In cells, Tpn is likely to be a direct mediator of peptide-regulated binding and release of MHC class I from the TAP complex.


Journal of Biological Chemistry | 2013

Glycan-Dependent and Independent Interactions Contribute to Cellular Substrate Recruitment by Calreticulin

Sanjeeva J. Wijeyesakere; Syed Monem Rizvi; Malini Raghavan

Background: We investigated the different modes of calreticulin-substrate binding. Results: Calreticulin binds glycosylated and nonglycosylated proteins with similar affinities but distinct kinetics and P-domain conformations. Conclusion: Successful substrate recruitment by calreticulin requires glycan and P-domain-dependent interactions. Significance: Elucidation of the distinct modes of calreticulin binding to substrate glycan and polypeptide components and their combined contributions to substrate recruitment in cells. Calreticulin is an endoplasmic reticulum chaperone with specificity for monoglucosylated glycoproteins. Calreticulin also inhibits precipitation of nonglycosylated proteins and thus contains generic protein-binding sites, but their location and contributions to substrate folding are unknown. We show that calreticulin binds glycosylated and nonglycosylated proteins with similar affinities but distinct interaction kinetics. Although both interactions involve the glycan-binding site or its vicinity, the arm-like proline-rich (P-) domain of calreticulin contributes to binding non/deglycosylated proteins. Correspondingly, ensemble FRET spectroscopy measurements indicate that glycosylated and nonglycosylated proteins induce “open” and “closed” P-domain conformations, respectively. The co-chaperone ERp57 influences substrate-binding kinetics and induces a closed P-domain conformation. Together with analysis of the interactions of calreticulin with cellular proteins, these findings indicate that the recruitment of monoglucosylated proteins to calreticulin is kinetically driven, whereas the P-domain and co-chaperone contribute to stable substrate binding. Substrate sequestration in the cleft between the glycan-binding site and P-domain is a likely mechanism for calreticulin-assisted protein folding.


Journal of Immunology | 2011

Distinct Functions for the Glycans of Tapasin and Heavy Chains in the Assembly of MHC Class I Molecules

Syed Monem Rizvi; Natasha Del Cid; Lonnie Lybarger; Malini Raghavan

Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β2m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain–β2m heterodimers, for which tapasin–ERp57 or tapasin–CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.


Journal of Virology | 2003

Responses of Herpes Simplex Virus Type 1-Infected Cells to the Presence of Extracellular Antibodies: gE-Dependent Glycoprotein Capping and Enhancement in Cell-to-Cell Spread

Syed Monem Rizvi; Malini Raghavan

ABSTRACT Binding of anti-herpes simplex virus (HSV) immunoglobulin G (IgG) to HSV type 1 (HSV-1)-infected HEL and HEp-2 cells causes changes in surface viral glycoprotein distribution, resulting in a capping of all viral glycoproteins towards one pole of the cell. This occurs in a gE-dependent manner. In HEL cells, low concentrations of anti-HSV IgG also enhance cell-to-cell spread of wild-type HSV-1 but not of gE deletion mutant HSV-1. These observations raised the possibility that gE-dependent mechanisms exist that allow some HSV-1-infected cells to respond to the presence of extracellular antibodies by enhancing the antibody-resistant mode of virus transmission.


Journal of Virology | 2001

An N-Terminal Domain of Herpes Simplex Virus Type I gE Is Capable of Forming Stable Complexes with gI

Syed Monem Rizvi; Malini Raghavan

ABSTRACT Using limited proteolytic analyses, we show that gE present in soluble herpes simplex virus type 1 gE-gI complexes is cleaved into a C-terminal (CgE) and an N-terminal (NgE) domain. The domain boundary is in the vicinity of residue 188 of mature gE. NgE, but not CgE, forms a stable complex with soluble gI.

Collaboration


Dive into the Syed Monem Rizvi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ericca Stamper

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge