Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylke Winkler is active.

Publication


Featured researches published by Sylke Winkler.


Mechanisms of Development | 2004

A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes.

Makoto Furutani-Seiki; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Hiroki Yoda; Tomonori Deguchi; Yukihiro Hirose; Akihito Yasuoka; Thorsten Henrich; Tomomi Watanabe; Norimasa Iwanami; Daiju Kitagawa; Kota Saito; Masakazu Osakada; Sanae Kunimatsu; Akihiro Momoi; Harun Elmasri; Christoph Winkler; Mirana Ramialison; Felix Loosli; Rebecca Quiring; Matthias Carl; Clemens Grabher; Sylke Winkler; Filippo Del Bene; Ai Shinomiya; Yasuko Kota; Toshiyuki Yamanaka; Yasuko Okamoto

A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.


Nature Methods | 2009

A toolkit for high-throughput, cross-species gene engineering in Drosophila

Radoslaw Kamil Ejsmont; Mihail Sarov; Sylke Winkler; Kamil Andrzej Lipinski; Pavel Tomancak

We generated two complementary genomic fosmid libraries for Drosophila melanogaster and Drosophila pseudoobscura that permit seamless modification of large genomic clones by high-throughput recombineering and direct transgenesis. The fosmid transgenes recapitulated endogenous gene expression patterns. These libraries, in combination with recombineering technology, will be useful to rescue mutant phenotypes, allow imaging of gene products in living flies and enable systematic analysis and manipulation of gene activity across species.


Current Biology | 2010

Stereotypical Cell Division Orientation Controls Neural Rod Midline Formation in Zebrafish

Elena Quesada-Hernández; Luca Caneparo; Sylvia Schneider; Sylke Winkler; Michael Liebling; Scott E. Fraser; Carl-Philipp Heisenberg

The development of multicellular organisms is dependent on the tight coordination between tissue growth and morphogenesis. The stereotypical orientation of cell divisions has been proposed to be a fundamental mechanism by which proliferating and growing tissues take shape. However, the actual contribution of stereotypical division orientation (SDO) to tissue morphogenesis is unclear. In zebrafish, cell divisions with stereotypical orientation have been implicated in both body-axis elongation and neural rod formation, although there is little direct evidence for a critical function of SDO in either of these processes. Here we show that SDO is required for formation of the neural rod midline during neurulation but dispensable for elongation of the body axis during gastrulation. Our data indicate that SDO during both gastrulation and neurulation is dependent on the noncanonical Wnt receptor Frizzled 7 (Fz7) and that interfering with cell division orientation leads to severe defects in neural rod midline formation but not body-axis elongation. These findings suggest a novel function for Fz7-controlled cell division orientation in neural rod midline formation during neurulation.


Nature | 2018

The axolotl genome and the evolution of key tissue formation regulators

Sergej Nowoshilow; Siegfried Schloissnig; Ji-Feng Fei; Andreas Dahl; Andy Wing Chun Pang; Martin Pippel; Sylke Winkler; Alex Hastie; George R. Young; Juliana G. Roscito; Francisco Falcon; Dunja Knapp; Sean Powell; Alfredo Cruz; Bianca Habermann; Michael Hiller; Elly M. Tanaka; Eugene W. Myers

Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.


Mechanisms of Development | 2004

Mutations affecting liver development and function in Medaka, Oryzias latipes, screened by multiple criteria

Tomomi Watanabe; Daiju Kitagawa; Kota Saito; Ryumei Kurashige; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Thorsten Henrich; Yukihiro Hirose; Akihito Yasuoka; Hiroki Yoda; Tomonori Deguchi; Norimasa Iwanami; Sanae Kunimatsu; Masakazu Osakada; Felix Loosli; Rebecca Quiring; Matthias Carl; Clemens Grabher; Sylke Winkler; Filippo Del Bene; Joachim Wittbrodt; Keiko Abe; Yousuke Takahama; Katsuhito Takahashi; Toshiaki Katada; Hiroshi Nishina; Hisato Kondoh; Makoto Furutani-Seiki

We report here mutations affecting various aspects of liver development and function identified by multiple assays in a systematic mutagenesis screen in Medaka. The 22 identified recessive mutations assigned to 19 complementation groups fell into five phenotypic groups. Group 1, showing defective liver morphogenesis, comprises mutations in four genes, which may be involved in the regulation of growth or patterning of the gut endoderm. Group 2 comprises mutations in three genes that affect the laterality of the liver; in kendama mutants of this group, the laterality of the heart and liver is uncoupled and randomized. Group 3 includes mutations in three genes altering bile color, indicative of defects in hemoglobin-bilirubin metabolism and globin synthesis. Group 4 consists of mutations in three genes, characterized by a decrease in the accumulation of fluorescent metabolite of a phospholipase A(2) substrate, PED6, in the gall bladder. Lipid metabolism or the transport of lipid metabolites may be affected by these mutations. Mutations in Groups 3 and 4 may provide animal models for relevant human diseases. Group 5 mutations in six genes affect the formation of endoderm, endodermal rods and hepatic bud from which the liver develops. These Medaka mutations, identified by morphological and metabolite marker screens, should provide clues to understanding molecular mechanisms underlying formation of a functional liver.


EMBO Reports | 2016

CRISPR/Cas9‐induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo

Nereo Kalebic; Elena Taverna; Stefania Tavano; Fong Kuan Wong; Dana Suchold; Sylke Winkler; Wieland B. Huttner; Mihail Sarov

We have applied the CRISPR/Cas9 system in vivo to disrupt gene expression in neural stem cells in the developing mammalian brain. Two days after in utero electroporation of a single plasmid encoding Cas9 and an appropriate guide RNA (gRNA) into the embryonic neocortex of Tis21::GFP knock‐in mice, expression of GFP, which occurs specifically in neural stem cells committed to neurogenesis, was found to be nearly completely (≈90%) abolished in the progeny of the targeted cells. Importantly, upon in utero electroporation directly of recombinant Cas9/gRNA complex, near‐maximal efficiency of disruption of GFP expression was achieved already after 24 h. Furthermore, by using microinjection of the Cas9 protein/gRNA complex into neural stem cells in organotypic slice culture, we obtained disruption of GFP expression within a single cell cycle. Finally, we used either Cas9 plasmid in utero electroporation or Cas9 protein complex microinjection to disrupt the expression of Eomes/Tbr2, a gene fundamental for neocortical neurogenesis. This resulted in a reduction in basal progenitors and an increase in neuronal differentiation. Thus, the present in vivo application of the CRISPR/Cas9 system in neural stem cells provides a rapid, efficient and enduring disruption of expression of specific genes to dissect their role in mammalian brain development.


eLife | 2013

An essential role for maternal control of Nodal signaling

Pooja Kumari; Patrick Gilligan; Shimin Lim; Long Duc Tran; Sylke Winkler; Robin Philp; Karuna Sampath

Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to be conserved. DOI: http://dx.doi.org/10.7554/eLife.00683.001


Mechanisms of Development | 2004

Mutations affecting retina development in Medaka

Felix Loosli; Filippo Del Bene; Rebecca Quiring; Martina Rembold; Juan Ramón Martínez-Morales; Matthias Carl; Clemens Grabher; Caroline Iquel; Annette Krone; Beate Wittbrodt; Sylke Winkler; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Thorsten Henrich; Tomonori Deguchi; Yukihiro Hirose; Norimasa Iwanami; Sanae Kunimatsu; Masakazu Osakada; Tomomi Watanabe; Akihito Yasuoka; Hiroki Yoda; Christoph Winkler; Harun Elmasri; Hisato Kondoh; Makoto Furutani-Seiki; Joachim Wittbrodt

In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.


Nature | 2018

The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms

Markus Alexander Grohme; Siegfried Schloissnig; Andrei Rozanski; Martin Pippel; George R. Young; Sylke Winkler; Holger Brandl; Andreas Dahl; Sean Powell; Michael Hiller; Eugene W. Myers; Jochen C. Rink

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.


HLA | 2017

Dual redundant sequencing strategy: Full‐length gene characterisation of 1056 novel and confirmatory HLA alleles

V. Albrecht; C. Zweiniger; V. Surendranath; K. Lang; G. Schöfl; Andreas Dahl; Sylke Winkler; V. Lange; I. Böhme; A. H. Schmidt

The high‐throughput department of DKMS Life Science Lab encounters novel human leukocyte antigen (HLA) alleles on a daily basis. To characterise these alleles, we have developed a system to sequence the whole gene from 5′‐ to 3′‐UTR for the HLA loci A, B, C, DQB1 and DPB1 for submission to the European Molecular Biology Laboratory – European Nucleotide Archive (EMBL‐ENA) and the IPD‐IMGT/HLA Database. Our workflow is based on a dual redundant sequencing strategy. Using shotgun sequencing on an Illumina MiSeq instrument and single molecule real‐time (SMRT) sequencing on a PacBio RS II instrument, we are able to achieve highly accurate HLA full‐length consensus sequences. Remaining conflicts are resolved using the R package DR2S (Dual Redundant Reference Sequencing). Given the relatively high throughput of this strategy, we have developed the semi‐automated web service TypeLoader, to aid in the submission of sequences to the EMBL‐ENA and the IPD‐IMGT/HLA Database. In the IPD‐IMGT/HLA Database release 3.24.0 (April 2016; prior to the submission of the sequences described here), only 5.2% of all known HLA alleles have been fully characterised together with intronic and UTR sequences. So far, we have applied our strategy to characterise and submit 1056 HLA alleles, thereby more than doubling the number of fully characterised alleles. Given the increasing application of next generation sequencing (NGS) for full gene characterisation in clinical practice, extending the HLA database concomitantly is highly desirable. Therefore, we propose this dual redundant sequencing strategy as a workflow for submission of novel full‐length alleles and characterisation of sequences that are as yet incomplete. This would help to mitigate the predominance of partially known alleles in the database.

Collaboration


Dive into the Sylke Winkler's collaboration.

Top Co-Authors

Avatar

Thorsten Henrich

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clemens Grabher

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Felix Loosli

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Quiring

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge