Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Baillet is active.

Publication


Featured researches published by Sylvain Baillet.


IEEE Signal Processing Magazine | 2001

Electromagnetic brain mapping

Sylvain Baillet; John C. Mosher; Richard M. Leahy

There has been tremendous advances in our ability to produce images of human brain function. Applications of functional brain imaging extend from improving our understanding of the basic mechanisms of cognitive processes to better characterization of pathologies that impair normal function. Magnetoencephalography (MEG) and electroencephalography (EEG) (MEG/EEG) localize neural electrical activity using noninvasive measurements of external electromagnetic signals. Among the available functional imaging techniques, MEG and EEG uniquely have temporal resolutions below 100 ms. This temporal precision allows us to explore the timing of basic neural processes at the level of cell assemblies. MEG/EEG source localization draws on a wide range of signal processing techniques including digital filtering, three-dimensional image analysis, array signal processing, image modeling and reconstruction, and, blind source separation and phase synchrony estimation. We describe the underlying models currently used in MEG/EEG source estimation and describe the various signal processing steps required to compute these sources. In particular we describe methods for computing the forward fields for known source distributions and parametric and imaging-based approaches to the inverse problem.


Computational Intelligence and Neuroscience | 2011

Brainstorm: a user-friendly application for MEG/EEG analysis

François Tadel; Sylvain Baillet; John C. Mosher; Dimitrios Pantazis; Richard M. Leahy

Brainstorm is a collaborative open-source application dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) data visualization and processing, with an emphasis on cortical source estimation techniques and their integration with anatomical magnetic resonance imaging (MRI) data. The primary objective of the software is to connect MEG/EEG neuroscience investigators with both the best-established and cutting-edge methods through a simple and intuitive graphical user interface (GUI).


Nature Neuroscience | 2005

Timing of the brain events underlying access to consciousness during the attentional blink

Claire Sergent; Sylvain Baillet; Stanislas Dehaene

In the phenomenon of attentional blink, identical visual stimuli are sometimes fully perceived and sometimes not detected at all. This phenomenon thus provides an optimal situation to study the fate of stimuli not consciously perceived and the differences between conscious and nonconscious processing. We correlated behavioral visibility ratings and recordings of event-related potentials to study the temporal dynamics of access to consciousness. Intact early potentials (P1 and N1) were evoked by unseen words, suggesting that these brain events are not the primary correlates of conscious perception. However, we observed a rapid divergence around 270 ms, after which several brain events were evoked solely by seen words. Thus, we suggest that the transition toward access to consciousness relates to the optional triggering of a late wave of activation that spreads through a distributed network of cortical association areas.


PLOS Biology | 2007

Brain Dynamics Underlying the Nonlinear Threshold for Access to Consciousness

Antoine Del Cul; Sylvain Baillet; Stanislas Dehaene

When a flashed stimulus is followed by a backward mask, subjects fail to perceive it unless the target-mask interval exceeds a threshold duration of about 50 ms. Models of conscious access postulate that this threshold is associated with the time needed to establish sustained activity in recurrent cortical loops, but the brain areas involved and their timing remain debated. We used high-density recordings of event-related potentials (ERPs) and cortical source reconstruction to assess the time course of human brain activity evoked by masked stimuli and to determine neural events during which brain activity correlates with conscious reports. Target-mask stimulus onset asynchrony (SOA) was varied in small steps, allowing us to ask which ERP events show the characteristic nonlinear dependence with SOA seen in subjective and objective reports. The results separate distinct stages in mask-target interactions, indicating that a considerable amount of subliminal processing can occur early on in the occipito-temporal pathway (<250 ms) and pointing to a late (>270 ms) and highly distributed fronto-parieto-temporal activation as a correlate of conscious reportability.


IEEE Transactions on Biomedical Engineering | 1997

A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem

Sylvain Baillet; Line Garnero

We present a new approach to the recovering of dipole magnitudes in a distributed source model for magnetoencephalographic (MEG) and electroencephalographic (EEG) imaging. This method consists in introducing spatial and temporal a priori information as a cure to this ill-posed inverse problem. A nonlinear spatial regularization scheme allows the preservation of dipole moment discontinuities between some a priori noncorrelated sources, for instance, when considering dipoles located on both sides of a sulcus. Moreover, we introduce temporal smoothness constraints on dipole magnitude evolution at time scales smaller than those of cognitive processes. These priors are easily integrated into a Bayesian formalism, yielding a maximum a posteriori (MAP) estimator of brain electrical activity. Results from EEG simulations of our method are presented and compared with those of classical quadratic regularization and a now popular generalized minimum-norm technique called low-resolution electromagnetic tomography (LORETA).


NeuroImage | 2013

Good practice for conducting and reporting MEG research

Joachim Gross; Sylvain Baillet; Gareth R. Barnes; Richard N. Henson; Arjan Hillebrand; Ole Nørregaard Jensen; Karim Jerbi; Vladimir Litvak; Burkhard Maess; Robert Oostenveld; Lauri Parkkonen; Jason R. Taylor; Virginie van Wassenhove; Michael Wibral; Jan-Mathijs Schoffelen

Magnetoencephalographic (MEG) recordings are a rich source of information about the neural dynamics underlying cognitive processes in the brain, with excellent temporal and good spatial resolution. In recent years there have been considerable advances in MEG hardware developments and methods. Sophisticated analysis techniques are now routinely applied and continuously improved, leading to fascinating insights into the intricate dynamics of neural processes. However, the rapidly increasing level of complexity of the different steps in a MEG study make it difficult for novices, and sometimes even for experts, to stay aware of possible limitations and caveats. Furthermore, the complexity of MEG data acquisition and data analysis requires special attention when describing MEG studies in publications, in order to facilitate interpretation and reproduction of the results. This manuscript aims at making recommendations for a number of important data acquisition and data analysis steps and suggests details that should be specified in manuscripts reporting MEG studies. These recommendations will hopefully serve as guidelines that help to strengthen the position of the MEG research community within the field of neuroscience, and may foster discussion in order to further enhance the quality and impact of MEG research.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Coherent neural representation of hand speed in humans revealed by MEG imaging

Karim Jerbi; Jean-Philippe Lachaux; Karim N'diaye; Dimitrios Pantazis; Richard M. Leahy; Line Garnero; Sylvain Baillet

The spiking activity of single neurons in the primate motor cortex is correlated with various limb movement parameters, including velocity. Recent findings obtained using local field potentials suggest that hand speed may also be encoded in the summed activity of neuronal populations. At this macroscopic level, the motor cortex has also been shown to display synchronized rhythmic activity modulated by motor behavior. Yet whether and how neural oscillations might be related to limb speed control is still poorly understood. Here, we applied magnetoencephalography (MEG) source imaging to the ongoing brain activity in subjects performing a continuous visuomotor (VM) task. We used coherence and phase synchronization to investigate the coupling between the estimated activity throughout the brain and the simultaneously recorded instantaneous hand speed. We found significant phase locking between slow (2- to 5-Hz) oscillatory activity in the contralateral primary motor cortex and time-varying hand speed. In addition, we report long-range task-related coupling between primary motor cortex and multiple brain regions in the same frequency band. The detected large-scale VM network spans several cortical and subcortical areas, including structures of the frontoparietal circuit and the cerebello–thalamo–cortical pathway. These findings suggest a role for slow coherent oscillations in mediating neural representations of hand kinematics in humans and provide further support for the putative role of long-range neural synchronization in large-scale VM integration. Our findings are discussed in the context of corticomotor communication, distributed motor encoding, and possible implications for brain–machine interfaces.


Human Brain Mapping | 1998

Influence of skull anisotropy for the forward and inverse problem in EEG : Simulation studies using FEM on realistic head models

Gildas Marin; Christophe Guérin; Sylvain Baillet; Line Garnero; Gérard Meunier

For the sake of realism in the description of conduction from primary neural currents to scalp potentials, we investigated the influence of skull anisotropy on the forward and inverse problems in brain functional imaging with EEG. At present, all methods available for cortical imaging assume a spherical geometry, or when using realistic head shapes do not consider the anisotropy of head tissues. However, to our knowledge, no study relates the implication of this simplifying hypothesis on the spatial resolution of EEG for source imaging.


NeuroImage | 2007

Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease

Marie Chupin; A. Romain Mukuna-Bantumbakulu; Eric Bardinet; Sylvain Baillet; Serge Kinkingnéhun; Louis Lemieux; Bruno Dubois; Line Garnero

We describe a new algorithm for the automated segmentation of the hippocampus (Hc) and the amygdala (Am) in clinical Magnetic Resonance Imaging (MRI) scans. Based on homotopically deforming regions, our iterative approach allows the simultaneous extraction of both structures, by means of dual competitive growth. One of the most original features of our approach is the deformation constraint based on prior knowledge of anatomical features that are automatically retrieved from the MRI data. The only manual intervention consists of the definition of a bounding box and positioning of two seeds; total execution time for the two structures is between 5 and 7 min including initialisation. The method is evaluated on 16 young healthy subjects and 8 patients with Alzheimers disease (AD) for whom the atrophy ranged from limited to severe. Three aspects of the performances are characterised for validating the method: accuracy (automated vs. manual segmentations), reproducibility of the automated segmentation and reproducibility of the manual segmentation. For 16 young healthy subjects, accuracy is characterised by mean relative volume error/overlap/maximal boundary distance of 7%/84%/4.5 mm for Hc and 12%/81%/3.9 mm for Am; for 8 Alzheimers disease patients, it is 9%/84%/6.5 mm for Hc and 15%/76%/4.5 mm for Am. We conclude that the performance of this new approach in data from healthy and diseased subjects in terms of segmentation quality, reproducibility and time efficiency compares favourably with that of previously published manual and automated segmentation methods. The proposed approach provides a new framework for further developments in quantitative analyses of the pathological hippocampus and amygdala in MRI scans.


NeuroImage | 2005

A comparison of random field theory and permutation methods for the statistical analysis of MEG data

Dimitrios Pantazis; Thomas E. Nichols; Sylvain Baillet; Richard M. Leahy

We describe the use of random field and permutation methods to detect activation in cortically constrained maps of current density computed from MEG data. The methods are applicable to any inverse imaging method that maps event-related MEG to a coregistered cortical surface. These approaches also extend directly to images computed from event-related EEG data. We determine statistical thresholds that control the familywise error rate (FWER) across space or across both space and time. Both random field and permutation methods use the distribution of the maximum statistic under the null hypothesis to find FWER thresholds. The former methods make assumptions on the distribution and smoothness of the data and use approximate analytical solutions, the latter resample the data and rely on empirical distributions. Both methods account for spatial and temporal correlation in the cortical maps. Unlike previous nonparametric work in neuroimaging, we address the problem of nonuniform specificity that can arise without a Gaussianity assumption. We compare and evaluate the methods on simulated data and experimental data from a somatosensory-evoked response study. We find that the random field methods are conservative with or without smoothing, though with a 5 vertex FWHM smoothness, they are close to exact. Our permutation methods demonstrated exact specificity in simulation studies. In real data, the permutation method was not as sensitive as the RF method, although this could be due to violations of the random field theory assumptions.

Collaboration


Dive into the Sylvain Baillet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard M. Leahy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Karim Jerbi

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitrios Pantazis

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge