Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Billet is active.

Publication


Featured researches published by Sylvain Billet.


Cancer Letters | 2008

Genotoxic potential of Polycyclic Aromatic Hydrocarbons-coated onto airborne Particulate Matter (PM2.5) in human lung epithelial A549 cells

Sylvain Billet; Imane Abbas; Jérémie Le Goff; Anthony Verdin; Véronique André; Paul-Eric Lafargue; Adam Hachimi; Fabrice Cazier; François Sichel; Pirouz Shirali; Guillaume Garçon

To improve the knowledge of the underlying mechanisms of action involved in air pollution Particulate Matter (PM)-induced toxicity in human lungs, with a particular interest of the crucial role played by coated-organic chemicals, we were interested in the metabolic activation of Polycyclic Aromatic Hydrocarbons (PAH)-coated onto air pollution PM, and, thereafter, the formation of PAH-DNA adducts in a human lung epithelial cell model (A549 cell line). Cells were exposed to Dunkerque citys PM(2.5) at its Lethal Concentrations at 10% and 50% (i.e. LC(10)=23.72 microg/mL or 6.33 microg/cm2, and LC(50)=118.60 microg/mL or 31.63 microg/cm2), and the study of Cytochrome P450 (CYP) 1A1 gene expression (i.e. RT-PCR) and protein activity (i.e. EROD activity), and the formation of PAH-DNA adducts (i.e. 32P-postlabeling), were investigated after 24, 48, and/or 72 h. PAH, PolyChlorinated Dibenzo-p-Dioxins and -Furans (PCDD/F), Dioxin-Like PolyChlorinated Biphenyls (DLPCB), and PolyChlorinated Biphenyls (PCB)-coated onto collected PM were determined (i.e. GC/MS and HRGC/HRMS, respectively), Negative (i.e. TiO2 or desorbed PM, dPM; EqLC10=19.42 microg/mL or 5.18 microg/cm2, and EqLC50=97.13 microg/mL or 25.90 microg/cm2), and positive (i.e. benzo(a)pyrene; 1 microM) controls were included in the experimental design. Statistically significant increases of CYP1A1 gene expression and protein activity were observed in A549 cells, 24, 48 and 72 h after their exposure to dPM, suggesting thereby that the employed outgassing method was not efficient enough to remove total PAH. Both the CYP1A1 gene expression and EROD activity were highly induced 24, 48 and 72 h after cell exposure to PM. However, only very low levels of PAH-DNA adducts, also not reliably quantifiable, were reported 72 h after cell exposure to dPM, and, particularly, PM. The relatively low levels of PAH together with the presence of PCDD/F, DLPCB, and PCB-coated onto Dunkerque Citys PM 2.5 could notably contribute to explain the borderline detection of PAH-DNA adducts in dPM and/or PM-exposed A549 cells. Hence, remaining very low doses of PAH in dPM or relatively low doses of PAH-coated onto PM were involved in enzymatic induction, a key feature in PAH-toxicity, but failed to show a clear genotoxicity in this in vitro study. We also concluded that, in the human lung epithelial cell model we used, and in the experimental conditions we chose, bulky-DNA adduct formation was apparently not a major factor involved in the Dunkerque Citys PM 2.5-induced toxicity.


Toxicology in Vitro | 2009

Air pollution particulate matter (PM2.5)-induced gene expression of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in an in vitro coculture lung model

Imane Abbas; Françoise Saint-Georges; Sylvain Billet; Anthony Verdin; Philippe Mulliez; Pirouz Shirali; Guillaume Garçon

The overarching goals were: (i) to develop an in vitro coculture model, including two relevant lung target cells: human alveolar macrophage (AM) isolated from bronchoalveolar lavage fluid, and immortalized cells originated from the normal lung tissue of a human embryo (L132 cell line), as a future strategy for near-realistic exposures to air pollution particulate matter (PM), and (ii) to study the gene expression of volatile organic compound (VOC) and/or polycyclic aromatic hydrocarbons (PAH)-metabolizing enzymes in this in vitro coculture model. Human AM and/or L132 cells in mono- and coculture were exposed for 24, 48 and 72h to Dunkerque Citys PM2.5 at its lethal concentrations at 10% and 50% (i.e. AM: LC10=14.93 microgPM/mL and LC50=74.63 microgPM/mL; L132: LC10=18.84 microgPM/mL and LC50=75.36 microgPM/mL), and the gene expression (i.e. Cytochrome P450 1A1, CYP1A1; CYP2E1; CYP2F1; microsomal Epoxide Hydrolase; NADPH Quinone Oxydo-Reductase-1, NQO1; and Glutathione S-Transferase pi-1 and mu-3, GST-pi1 and GST-mu3) was studied. In human AM in mono- and coculture, and in L132 cells in monoculture, VOC and/or PAH-coated onto PM induced the gene expression of CYP1A1, CYP2E1, NQO1, GST-pi1, and/or GST-mu3. However, there were quiet different outcomes based on the use of L132 cells in mono- vs. coculture: the pattern of VOC and/or PAH-metabolizing enzymes induced by PM in L132 cells in monoculture remained almost unaffected when in coculture with AM. Taken together, these results reinforced the key role of PM-exposed target human AM in the defenses of the human lung from external injuries, notably through their higher capacity to retain PM, and indicated that carbonaceous cores of PM, as physical vector of the penetration and retention of coated-VOC and/or PAH into cells, enabled them to exert a longer toxicity. The use of such a near realistic exposure system could also be a very useful and powerful tool to identify the mechanisms by which air pollution PM induced adverse health effects.


Toxicology | 2008

Gene expression induction of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in isolated human alveolar macrophages in response to airborne particulate matter (PM2.5)

Françoise Saint-Georges; Imane Abbas; Sylvain Billet; Anthony Verdin; Pierre Gosset; Philippe Mulliez; Pirouz Shirali; Guillaume Garçon

To contribute to improve the knowledge of the underlying mechanisms of action involved in air pollution particulate matter (PM)-induced cytotoxicity, we were interested in the metabolic activation of volatile organic compounds (VOC) and/or polycyclic aromatic hydrocarbons (PAH) coated onto Dunkerque Citys PM2.5 in human alveolar macrophages (AM) isolated from bronchoalveolar lavage fluid (BALF). This in vitro cell lung model is closer to the normal in vivo situation than other lung cell lines, notably in the characteristics that AM display in terms of gene expression of phase I and phase II-metabolizing enzymes. The bronchoscopic examinations and BAL procedures were carried out without any complications. After 24, 48 and 72h of incubation, calculated lethal concentrations at 10% and 50% of collected airborne PM were 14.93microg PM/mL and 74.63microg PM/mL, respectively, and indicated the higher sensibility of such target lung cells. Moreover, VOC and/or PAH coated onto PM induced gene expression of cytochrome P450 (cyp) 1a1, cyp2e1, nadph quinone oxydo-reductase-1, and glutathione S-transferase-pi 1 and mu 3, versus controls, suggesting thereby the formation of biologically reactive metabolites. In addition, these results suggested the role of physical carrier of carbonaceous core of PM, which can, therefore, increase both the penetration and the retention of attached-VOC into the cells, thereby enabling them to exert a longer induction. Hence, we concluded that the metabolic activation of the very low doses of VOC and/or PAH coated onto Dunkerque Citys PM2.5 is one of the underlying mechanisms of action closely involved in its cytotoxicity in isolated human AM in culture.


Journal of Environmental Sciences-china | 2016

Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: Organic compounds

Fabrice Cazier; Paul Genevray; Dorothée Dewaele; Habiba Nouali; Anthony Verdin; Frédéric Ledoux; Adam Hachimi; Lucie Courcot; Sylvain Billet; Saâd Bouhsina; Pirouz Shirali; Guillaume Garçon; Dominique Courcot

Atmospheric aerosol samples (PM2.5-0.3, i.e., atmospheric particles ranging from 0.3 to 2.5μm) were collected during two periods: spring-summer 2008 and autumn-winter 2008-2009, using high volume samplers equipped with cascade impactors. Two sites located in the Northern France were compared in this study: a highly industrialised city (Dunkirk) and a rural site (Rubrouck). Physicochemical analysis of particulate matter (PM) was undertaken to propose parameters that could be used to distinguish the various sources and to exhibit seasonal variations but also to provide knowledge of chemical element composition for the interpretation of future toxicological studies. The study showed that PM2.5-0.3 concentration in the atmosphere of the rural area remains stable along the year and was significantly lower than in the urban or industrial ones, for which concentrations increase during winter. High concentrations of polycyclic aromatic hydrocarbons (PAHs), dioxins, furans and dioxin like polychlorinated biphenyls (DL-PCBs), generated by industrial activities, traffic and municipal wastes incineration were detected in the samples. Specific criteria like Carbon Preference Index (CPI) and Combustion PAHs/Total PAHs ratio (CPAHs/TPAHs) were used to identify the possible sources of atmospheric pollution. They revealed that paraffins are mainly emitted by biogenic sources in spring-summer whereas as in the case of PAHs, they have numerous anthropogenic emission sources in autumn-winter (mainly from traffic and domestic heating).


Archives of Toxicology | 2010

Benzene-induced mutational pattern in the tumour suppressor gene TP53 analysed by use of a functional assay, the functional analysis of separated alleles in yeast, in human lung cells

Sylvain Billet; Vincent Paget; Guillaume Garçon; Natacha Heutte; Véronique André; Pirouz Shirali; François Sichel

Recent concern has centred on the effects of continuous exposure to low concentrations of benzene, both occupationally and environmentally. Although benzene has for a long time been recognised as a carcinogen for humans, its mechanistic pathway remains unclear. Since mutations in the tumour suppressor gene TP53 are the most common genetic alterations involved in human cancer, our objective was to establish the first mutational pattern induced by benzene on the TP53 gene in human type II-like alveolar epithelial A549 cells by using the Functional Analysis of Separated Alleles in Yeast (FASAY). Seventeen mutations linked to benzene exposure were found: 3 one- or two-base deletions, and 14 single nucleotide substitutions (1 nonsense and 13 missense mutations). A>G and G>A transitions were the most prevalent (23.5% for both). Other mutations included A>C transversions and deletions (3/17, 17.6% for both), G>T transversions (2/17, 11.8%) and A>T transversions (1/17, 5.9%). Data arising from this benzene-induced mutational pattern affecting TP53, a critical target gene in human carcinogenesis, have been compared with those reported in human acute myeloid leukaemia, the aetiology of which is clearly linked to benzene exposure, and in experimental benzene-induced carcinoma. This comparison suggests that A>G transition could be a fingerprint of benzene exposure in tumours. Furthermore, our results demonstrate that FASAY is a promising tool for the study of the carcinogenic potency of benzene in the human lung.


Ageing Research Reviews | 2015

Air Pollution modifies the association between successful and pathological aging throughout the frailty condition

Bertrand Fougère; Bruno Vellas; Sylvain Billet; Perrine J. Martin; Maurizio Gallucci; Matteo Cesari

The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions.


Environmental Pollution | 2018

Comparative study of diesel and biodiesel exhausts on lung oxidative stress and genotoxicity in rats

Thierry Douki; Cécile Corbière; David Preterre; Perrine J. Martin; Valérie Lecureur; Véronique André; Yann Landkocz; Ivannah Pottier; Veronika Keravec; Olivier Fardel; Silvestre Moreira-Rebelo; Didier Pottier; Cathy Vendeville; Frédéric Dionnet; Pierre Gosset; Sylvain Billet; Christelle Monteil; François Sichel

The contribution of diesel exhaust to atmospheric pollution is a major concern for public health, especially in terms of occurrence of lung cancers. The present study aimed at addressing the toxic effects of a repeated exposure to these emissions in an animal study performed under strictly controlled conditions. Rats were repeatedly exposed to the exhaust of diesel engine. Parameters such as the presence of a particle filter or the use of gasoil containing rapeseed methyl ester were investigated. Various biological parameters were monitored in the lungs to assess the toxic and genotoxic effects of the exposure. First, a transcriptomic analysis showed that some pathways related to DNA repair and cell cycle were affected to a limited extent by diesel but even less by biodiesel. In agreement with occurrence of a limited genotoxic stress in the lungs of diesel-exposed animals, small induction of γ-H2AX and acrolein adducts was observed but not of bulky adducts and 8-oxodGuo. Unexpected results were obtained in the study of the effect of the particle filter. Indeed, exhausts collected downstream of the particle filter led to a slightly higher induction of a series of genes than those collected upstream. This result was in agreement with the formation of acrolein adducts and γH2AX. On the contrary, induction of oxidative stress remained very limited since only SOD was found to be induced and only when rats were exposed to biodiesel exhaust collected upstream of the particle filter. Parameters related to telomeres were identical in all groups. In summary, our results point to a limited accumulation of damage in lungs following repeated exposure to diesel exhausts when modern engines and relevant fuels are used. Yet, a few significant effects are still observed, mostly after the particle filter, suggesting a remaining toxicity associated with the gaseous or nano-particular phases.


Environmental Research | 2017

Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system

Margueritta Al Zallouha; Yann Landkocz; Julien Brunet; Renaud Cousin; Eric Genty; Dominique Courcot; Stéphane Siffert; Pirouz Shirali; Sylvain Billet

Abstract Toluene is one of the most used Volatile Organic Compounds (VOCs) in the industry despite its major health impacts. Catalytic oxidation represents an efficient remediation technique in order to reduce its emission directly at the source, but it can release by‐products. To complete the classical performance assessment using dedicated analytical chemistry methods, we propose to perform an untargeted toxicological validation on two efficient catalysts. Using biological system allows integrating synergy and antagonism in toxic effects of emitted VOCs and by‐products, often described in case of multi‐exposure condition. Catalysts Pd/&agr;‐Al2O3 and Pd/&ggr;‐Al2O3 developed for the oxidation of toluene were both coupled to a Vitrocell® Air‐Liquid Interface (ALI) system, for exposure of human A549 lung cells during 1 h to toluene or to catalysts exhaust before quantification of xenobiotics metabolizing enzymes. This study validated initially the Vitrocell® as an innovative, direct and dynamic model of ALI exposure in the assessment of the performances of new catalysts, showing the presence of chemically undetected by‐products. The comparison of the two catalysts showed then that fewer organic compounds metabolizing genes were induced by Pd/&ggr;‐Al2O3 in comparison to Pd/&agr;‐Al2O3, suggesting that Pd/&ggr;‐Al2O3 is more efficient for toluene total oxidation from a toxicological point of view. Graphical abstract Symbol. No caption available. HighlightsCatalytic oxidation is an efficient remediation technique of industrial VOC emissionsCatalyst performance is generally assessed measuring VOC conversion or CO2 emission, but not the formation of by‐products.Untargeted toxicological validation of catalyst by coupling it to an Air‐Liquid Interface exposure system.Using biological system allows integrating synergy and antagonism in toxic effects of emitted VOCs and by‐products.CYP1A1 induction in exposed A549 cells showed the formation of PAHs undetected by chemical methods.


International Journal of Hygiene and Environmental Health | 2017

Smoker extracellular vesicles influence status of human bronchial epithelial cells

Amélie Héliot; Yann Landkocz; Françoise Saint-Georges; Pierre Gosset; Sylvain Billet; Pirouz Shirali; Dominique Courcot; Perrine J. Martin

Cigarette smoking is a habit that has spread all over the world and is a significant risk factor for many diseases including cardiovascular disease, chronic obstructive pulmonary disease (COPD), asthma and lung cancer. Evaluation and understanding of tobacco health effects are of major interest worldwide and answer to important societal concerns. Identification of new biomarkers of exposure to tobacco smoke potentially implicated in COPD or lung carcinogenesis would allow a better observation of tobacco exposed population, thanks to screening establishment at reversible stages of pathological processes. In this study, we questioned whether cigarette smoking alters miRNA profiles of Extracellular Vesicles (EVs) present in human Broncho Alveolar Lavages (BALs), which could affect surrounding normal bronchial epithelial cells status. To this aim, BALs were carried out on 10 Smokers and 10 Non-Smokers, and EVs were isolated from the supernatants and characterized. We then compared the amount of 10 microRNAs (miRNAs) present in Smokers versus Non-Smokers BAL EVs and performed statistical analysis to discuss the biological significance by the smoking status and to evaluate BAL EV miRNAs as potential biomarkers of tobacco exposure. Finally, we tested the effects of smokers versus non-smokers EVs on human bronchial epithelial cells (BEAS-2B) to compare their influence on the cells status. Our study shows for the first time in human samples that smoking can alter lung EV profile that can influence surrounding bronchial epithelial cells.


Environmental Science and Pollution Research | 2017

Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon

Pamela N. Melki; Frédéric Ledoux; Samer Aouad; Sylvain Billet; Bilal El Khoury; Yann Landkocz; Roula M. Abdel-Massih; Dominique Courcot

In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM2.5–0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.

Collaboration


Dive into the Sylvain Billet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge