Sylvain Latour
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvain Latour.
Nature | 2006
Stephanie Rigaud; Marie-Claude Fondanèche; Nathalie Lambert; Benoit Pasquier; Véronique Mateo; Pauline Soulas; Lionel Galicier; Françoise Le Deist; Frédéric Rieux-Laucat; Patrick Revy; Alain Fischer; Geneviève de Saint Basile; Sylvain Latour
The homeostasis of the immune response requires tight regulation of the proliferation and apoptosis of activated lymphocytes. In humans, defects in immune homeostasis result in lymphoproliferation disorders including autoimmunity, haemophagocytic lymphohystiocytosis and lymphomas. The X-linked lymphoproliferative syndrome (XLP) is a rare, inherited immunodeficiency that is characterized by lymphohystiocytosis, hypogammaglobulinaemia and lymphomas, and that usually develops in response to infection with Epstein–Barr virus (EBV). Mutations in the signalling lymphocyte activation molecule (SLAM)-associated protein SAP, a signalling adaptor molecule, underlie 60% of cases of familial XLP. Here, we identify mutations in the gene that encodes the X-linked inhibitor-of-apoptosis XIAP (also termed BIRC4) in patients with XLP from three families without mutations in SAP. These mutations lead to defective expression of XIAP. We show that apoptosis of lymphocytes from XIAP-deficient patients is enhanced in response to various stimuli including the T-cell antigen receptor (TCR)–CD3 complex, the death receptor CD95 (also termed Fas or Apo-1) and the TNF-associated apoptosis-inducing ligand receptor (TRAIL-R). We also found that XIAP-deficient patients, like SAP-deficient patients, have low numbers of natural killer T-lymphocytes (NKT cells), indicating that XIAP is required for the survival and/or differentiation of NKT cells. The observation that XIAP-deficiency and SAP-deficiency are both associated with a defect in NKT cells strengthens the hypothesis that NKT cells have a key role in the immune response to EBV. Furthermore, by identifying an XLP immunodeficiency that is caused by mutations in XIAP, we show that XIAP is a potent regulator of lymphocyte homeostasis in vivo.
Immunity | 1995
Marc Daëron; Sylvain Latour; Odile Malbec; Eric Espinosa; Patrick Pina; Suzanne Pasmans; Wolf H. Fridman
The cell-triggering properties of BCR, TCR and FcR depend on structurally related immunoreceptor tyrosine-based activation motifs (ITAMs). Fc gamma RIIB have no ITAM and do not trigger cell activation. When coaggregated to BCR, they inhibit B cell activation. We show here that, when coaggregated to these receptors, Fc gamma RIIB inhibit Fc epsilon RI-, Fc gamma RIIA-, and TCR-dependent cell activation. Inhibition also affected cell activation by single ITAMs, in isolated FcR or TCR subunits. The same tyrosine-based inhibitory motif (ITIM), which is highly conserved in murine and human Fc gamma RIIB and that was previously shown to inhibit BCR-dependent B cell activation, was required to regulate TCR- and FcR-dependent cell activation. Our findings endow Fc gamma RIIB, and thus IgG antibodies, with general immunoregulatory properties susceptible to act on all ITAM-containing receptors.
Journal of Clinical Investigation | 1995
Marc Daëron; O Malbec; Sylvain Latour; M Arock; Wolf-Herman Fridman
Allergic symptoms result from the release of granular and lipidic mediators and of cytokines by inflammatory cells. The whole process is initiated by the aggregation of mast cell and basophil high-affinity IgE receptors (Fc epsilon RI) by IgE and antigen. We report here that IgE-induced release of mediator and cytokine can be inhibited by cross-linking Fc epsilon RI to low-affinity IgG receptors (Fc gamma RII) which are constitutively expressed on mast cells and basophils. Using a model of stable transfectants in RBL-2H3 cells expressing endogeneous rat Fc epsilon RI and recombinant murine Fc gamma RII, we showed that inhibition requires that Fc epsilon RI be crosslinked to Fc gamma RII by the same multivalent ligand. Inhibition of cross-linked receptors left non-cross-linked Fc epsilon RI capable of triggering mediator release and was reversible upon disengagement. Both isoforms of wild-type Fc gamma RII were equally capable of inhibiting Fc epsilon RI-mediated mast cell activation provided they had an intact intracytoplasmic domain. Our results demonstrate that mast cell secretory responses triggered by high-affinity receptors for IgE may be controlled by low-affinity receptors for IgG. This regulation of Fc epsilon RI-mediated mast cell activation is of potential interest in mast cell physiology and in allergic pathology.
Molecular and Cellular Biology | 1998
Friedemann Kiefer; John Brumell; Nadia Al-Alawi; Sylvain Latour; Alec M Cheng; André Veillette; Sergio Grinstein; Tony Pawson
ABSTRACT The cytoplasmic protein tyrosine kinase Syk has two amino-terminal SH2 domains that engage phosphorylated immunoreceptor tyrosine-based activation motifs in the signaling subunits of immunoreceptors. Syk, in conjunction with Src family kinases, has been implicated in immunoreceptor signaling in both lymphoid and myeloid cells. We have investigated the role of Syk in Fcγ receptor (FcγR)-dependent and -independent responses in bone marrow-derived macrophages and neutrophils by using mouse radiation chimeras reconstituted with fetal liver cells from Syk−/− embryos. Chimeric mice developed an abdominal hemorrhage starting 2 to 3 months after transplantation that was ultimately lethal. Syk-deficient neutrophils derived from the bone marrow were incapable of generating reactive oxygen intermediates in response to FcγR engagement but responded normally to tetradecanoyl phorbol acetate stimulation. Syk-deficient macrophages were defective in phagocytosis induced by FcγR but showed normal phagocytosis in response to complement. The tyrosine phosphorylation of multiple cellular polypeptides, including the FcγR γ chain, as well as Erk2 activation, was compromised inSyk −/− macrophages after FcγR stimulation. In contrast, the induction of nitric oxide synthase in macrophages stimulated with lipopolysaccharide and gamma interferon was not dependent on Syk. Surprisingly, Syk-deficient macrophages were impaired in the ability to survive or proliferate on plastic petri dishes. Taken together, these results suggest that Syk has specific physiological roles in signaling from FcγRs in neutrophils and macrophages and raise the possibility that in vivo, Syk is involved in signaling events other than those mediated by immunoreceptors.
Journal of Experimental Medicine | 2005
Benoit Pasquier; Luo Yin; Marie-Claude Fondanèche; Francis Relouzat; Coralie Bloch-Queyrat; Nathalie Lambert; Alain Fischer; Geneviève de Saint-Basile; Sylvain Latour
SAP is an adaptor protein expressed in T cells and natural killer cells. It plays a critical role in immunity, as it is mutated in humans with X-linked lymphoproliferative syndrome (XLP), a fatal immunodeficiency characterized by an abnormal response to Epstein-Barr virus (EBV) infection. SAP interacts with the SLAM family receptors and promotes transduction signal events by these receptors through its capacity to recruit and activate the Src kinase FynT. Because it has been previously established that FynT is selectively required for the development of NKT cells, we examined NKT cells in SAP-deficient mice and in humans with XLP. In the absence of SAP, the development of NKT cells is severely impaired both in mice and in humans. These results imply that SAP is a potent regulator of NKT cell development. They also identify for the first time a defect in NKT cells associated with a human primary immunodeficiency, revealing a potential role of NKT cells in the immune response to EBV.
PLOS Biology | 2009
Emmanuel Martin; Emmanuel Treiner; Livine Duban; Lucia Guerri; Hélène Laude; Cécile Toly; Virginie Premel; Anne Devys; Ivan C. Moura; Florence Tilloy; Stéphane Cherif; Gabriella Vera; Sylvain Latour; Claire Soudais; Olivier Lantz
Mucosal-associated invariant T (MAIT) cells display two evolutionarily conserved features: an invariant T cell receptor (TCR)α (iTCRα) chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC) molecule, MHC-related molecule 1 (MR1). MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanVα7.2 antibody and MAIT cell-specific iTCRα and TCRβ transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRα and TCRβ transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT) cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%–4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the periphery in a process dependent both upon B cells and the bacterial flora. Thus, their development follows a unique pattern at the crossroad of NKT and γδ T cells.
Nature Cell Biology | 2003
Sylvain Latour; Romain Roncagalli; Riyan Chen; Marcin Bakinowski; Xiaochu Shi; Pamela L. Schwartzberg; Dominique Davidson; André Veillette
SAP (or SH2D1A), an adaptor-like molecule expressed in immune cells, is composed almost exclusively of a Src homology 2 (SH2) domain. In humans, SAP is mutated and either absent or non-functional in X-linked lymphoproliferative (XLP) syndrome, a disease characterized by an inappropriate response to Epstein-Barr virus (EBV) infection. Through its SH2 domain, SAP associates with tyrosines in the cytoplasmic domain of the SLAM family of immune cell receptors, and is absolutely required for the function of these receptors. This property results from the ability of SAP to promote the selective recruitment and activation of FynT, a cytoplasmic Src-related protein tyrosine kinase (PTK). Here, we demonstrate that SAP operates in this pathway by binding to the SH3 domain of FynT, through a second region in the SAP SH2 domain distinct from the phosphotyrosine-binding motif. We demonstrate that this interaction is essential for SAP-mediated signalling in T cells, and for the capacity of SAP to modulate immune cell function. These observations characterize a biologically important signalling mechanism in which an adaptor molecule composed only of an SH2 domain links a receptor devoid of intrinsic catalytic activity to the kinase required for its function.
Blood | 2011
Jana Pachlopnik Schmid; Danielle Canioni; Despina Moshous; Fabien Touzot; Nizar Mahlaoui; Fabian Hauck; Hirokazu Kanegane; Eduardo López-Granados; Ester Mejstrikova; Isabelle Pellier; Lionel Galicier; Claire Galambrun; Vincent Barlogis; Pierre Bordigoni; Alain Fourmaintraux; M. Hamidou; Alain Dabadie; Françoise Le Deist; Filomeen Haerynck; Marie Ouachée-Chardin; Pierre-Simon Rohrlich; Jean-Louis Stephan; Christelle Lenoir; Stephanie Rigaud; Nathalie Lambert; Michèle Milili; Claudin Schiff; Helen Chapel; Capucine Picard; Geneviève de Saint Basile
X-linked lymphoproliferative syndromes (XLP) are primary immunodeficiencies characterized by a particular vulnerability toward Epstein-Barr virus infection, frequently resulting in hemophagocytic lymphohistiocytosis (HLH). XLP type 1 (XLP-1) is caused by mutations in the gene SH2D1A (also named SAP), whereas mutations in the gene XIAP underlie XLP type 2 (XLP-2). Here, a comparison of the clinical phenotypes associated with XLP-1 and XLP-2 was performed in cohorts of 33 and 30 patients, respectively. HLH (XLP-1, 55%; XLP-2, 76%) and hypogammaglobulinemia (XLP-1, 67%; XLP-2, 33%) occurred in both groups. Epstein-Barr virus infection in XLP-1 and XLP-2 was the common trigger of HLH (XLP-1, 92%; XLP-2, 83%). Survival rates and mean ages at the first HLH episode did not differ for both groups, but HLH was more severe with lethal outcome in XLP-1 (XLP-1, 61%; XLP-2, 23%). Although only XLP-1 patients developed lymphomas (30%), XLP-2 patients (17%) had chronic hemorrhagic colitis as documented by histopathology. Recurrent splenomegaly often associated with cytopenia and fever was preferentially observed in XLP-2 (XLP-1, 7%; XLP-2, 87%) and probably represents minimal forms of HLH as documented by histopathology. This first phenotypic comparison of XLP subtypes should help to improve the diagnosis and the care of patients with XLP conditions.
Journal of Biological Chemistry | 1998
André Veillette; Eric Thibaudeau; Sylvain Latour
SHPS-1 (or SIRP) is a member of the immunoglobulin (Ig) superfamily abundantly expressed in neurons and other cell types. Within its cytoplasmic domain, it possesses at least two immunoreceptor tyrosine-based inhibitory motifs, which are targets for tyrosine phosphorylation and mediate the recruitment of SHP-2, an Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase. Since other immunoreceptor tyrosine-based inhibitory motifs-containing receptors have critical roles in the negative regulation of hemopoietic cell functions, we wanted to examine the expression of SHPS-1 in cells of hematological lineages. By analyzing a panel of hemopoietic cell lines, evidence was provided that SHPS-1 is abundantly expressed in macrophages and, to a lesser extent, in myeloid cells. No expression was detected in T-cell or B-cell lines. Expression of SHPS-1 could also be documented in normal ex vivo peritoneal macrophages. Further studies showed that SHPS-1 was an efficient tyrosine phosphorylation substrate in macrophages. However, unlike in non-hemopoietic cells, tyrosine-phosphorylated SHPS-1 in macrophages associated primarily with SHP-1 and not SHP-2. Finally, our analyses allowed us to identify several isoforms of SHPS-1 in mouse cells. In part, this heterogeneity was due to differential glycosylation of SHPS-1. Additionally, it was caused by the production of at least two distinct shps-1 transcripts, coding for SHPS-1 polypeptides having different numbers of Ig-like domains in the extracellular region. Taken together, these findings indicate that SHPS-1 is likely to play a significant role in macrophages, at least partially as a consequence of its capacity to recruit SHP-1.
Journal of Immunology | 2001
Sylvain Latour; Hiroyuki Tanaka; Christian E. Demeure; Véronique Mateo; Manuel Rubio; Eric J. Brown; Charles R. Maliszewski; Frederik P. Lindberg; Anna Oldenborg; Axel Ullrich; Guy Delespesse; Marika Sarfati
Proinflammatory molecules, including IFN-γ and IL-12, play a crucial role in the elimination of causative agents. To allow healing, potent anti-inflammatory processes are required to down-regulate the inflammatory response. In this study, we first show that CD47/integrin-associated protein, a ubiquitous multispan transmembrane protein highly expressed on T cells, interacts with signal-regulator protein (SIRP)-α, an immunoreceptor tyrosine-based inhibition motif-containing molecule selectively expressed on myelomonocytic cells, and next demonstrate that this pair of molecules negatively regulates human T and dendritic cell (DC) function. CD47 ligation by CD47 mAb or L-SIRP-α transfectants inhibits IL-12R expression and down-regulates IL-12 responsiveness of activated CD4+ and CD8+ adult T cells without affecting their response to IL-2. Human CD47-Fc fusion protein binds SIRP-α expressed on immature DC and mature DC. SIRP-α engagement by CD47-Fc prevents the phenotypic and functional maturation of immature DC and still inhibits cytokine production by mature DC. Finally, in allogeneic MLR between mDC and naive T cells, CD47-Fc decreases IFN-γ production after priming and impairs the development of a Th1 response. Therefore, CD47 on T cells and its cognate receptor SIRP-α on DC define a novel regulatory pathway that may be involved in the maintenance of homeostasis by preventing the escalation of the inflammatory immune response.