Sylvain Mahé
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvain Mahé.
Peptides | 2000
Nathalie Ledoux-Rolf Pedersen; Claire Nagain-Domaine; Sylvain Mahé; Jacques Chariot; Claude Rozé; Daniel Tomé
The effect of caseinomacropeptide (CMP) (the [106-169] fragment of kappa-casein produced during digestion of milk protein), was studied in anesthetized rats using bile diversion for a pure pancreatic juice collection system. Intraduodenal administration of CMP induced a dose-related specific stimulation of pancreatic secretion which was nearly abolished by devazepide, atropine, hexamethonium, vagotomy or perivagal capsaicin pretreatment. Moreover, CMP did not inhibit in vitro trypsin activity. These results demonstrate that CMP is more likely to stimulate pancreatic secretion specifically through cholecystokinin release and activation of a vago-vagal cholinergic reflex loop than by inhibition of luminal trypsin, in anesthetized rats.
JAMA Pediatrics | 2008
Damien Paineau; François Beaufils; Alain Boulier; Dominique-Adèle Cassuto; Judith Chwalow; Pierre Combris; Charles Couet; Béatrice Jouret; Lionel Lafay; Martine Laville; Sylvain Mahé; C. Ricour; Monique Romon; Chantal Simon; Maïté Tauber; Paul Valensi; Véronique Chapalain; Othar Zourabichvili; Francis Bornet
OBJECTIVE To test the hypothesis that family dietary coaching would improve nutritional intakes and weight control in free-living (noninstitutionalized) children and parents. DESIGN Randomized controlled trial. SETTING Fifty-four elementary schools in Paris, France. PARTICIPANTS One thousand thirteen children (mean age, 7.7 years) and 1013 parents (mean age, 40.5 years). INTERVENTION Families were randomly assigned to group A (advised to reduce fat and to increase complex carbohydrate intake), group B (advised to reduce both fat and sugar and to increase complex carbohydrate intake), or a control group (given no advice). Groups A and B received monthly phone counseling and Internet-based monitoring for 8 months. OUTCOME MEASURES Changes in nutritional intake, body mass index (calculated as weight in kilograms divided by height in meters squared), fat mass, physical activity, blood indicators, and quality of life. RESULTS Compared with controls, participants in the intervention groups achieved their nutritional targets for fat intake and to a smaller extent for sugar and complex carbohydrate intake, leading to a decrease in energy intake (children, P < .001; parents, P = .02). Mean changes in body mass index were similar among children (group A, + 0.05, 95% confidence interval [CI], - 0.06 to 0.16; group B, + 0.10, 95% CI, - 0.03 to 0.23; control group, + 0.13, 95% CI, 0.04-0.22; P = .45), but differed in parents (group A, + 0.13, 95% CI, - 0.01 to 0.27; group B, - 0.02, 95% CI, - 0.14 to 0.11; control group, + 0.24, 95% CI, 0.13-0.34; P = .001), with a significant difference between group B and the control group (P = .01). CONCLUSIONS Family dietary coaching improves nutritional intake in free-living children and parents, with beneficial effects on weight control in parents. Trial Registration clinicaltrials.gov Identifier: NCT00456911.
British Journal of Nutrition | 1999
Cécile Bos; Sylvain Mahé; Claire Gaudichon; Robert Benamouzig; Nicolas Gausserès; Catherine Luengo; Françoise Ferrière; Jacques Rautureau; Daniel Tomé
The nutritional quality of milk proteins, evaluated both in terms of digestibility and postprandial oxidation and retention in human subjects, was investigated in this study. Five healthy adult volunteers were given 480 ml 15N-labelled milk (i.e. 190 mmol N). 15N was subsequently determined at the ileal level, using a naso-intestinal intubation technique, as well as at the faecal level. Plasma and urine were sampled for 8 h after meal ingestion. Dietary exogenous N recovered at the terminal ileum after 8 h reached 8.6 (SE 0.8) mmol while the amount collected in the faeces was 6.5 (SE 0.7) mmol after 5 d. The true ileal and faecal digestibilities were 95.5 (SE 0.4)% and 96.6 (SE 0.4)% respectively. The appearance of [15N]amino acids in the plasma was rapid and prolonged. The measurement of 15N in the body urea pool and in the N excreted in the urine allowed us to calculate the deamination occurring after [15N]milk protein absorption. The net postprandial protein utilization (i.e. NPPU = (Nabsorbed-Ndeaminated)/Ningested), calculated as an index of protein quality 8 h after milk ingestion, was 81.0 (SE 1.9)%. Our data confirm that milk protein has a high oro-ileal digestibility in man and demonstrate that milk protein has a high NPPU, an index corresponding to a period in which the dietary protein retention is maximal.
British Journal of Nutrition | 1995
Clarie Gaudichon; Sylvain Mahé; Nils Roos; Robert Benamouzig; Catherine Luengo; Jean-François Huneau; Hinrich Sick; Christine Bouley; Jaques Rautureau; Daniel Tomé
Milk and yoghurt proteins were 15N-labelled in order to measure the flow rate of exogenous N during digestion in the human intestine. After fasting overnight, sixteen healthy volunteers, each with a naso-jejunal tube, ingested either [15N]milk (n 7) or [15N]yoghurt (n 9). Jejunal samples were collected every 20 min for 4 h. A significant stimulation of endogenous N secretion was observed during the 20-60 min period after yoghurt ingestion and the 20-40 min period after milk ingestion. The endogenous N flows over a 4 h period did not differ between the groups (44.3(SEM 6.5) mmol for milk and 63.5(SEM 5.9) mmol for yoghurt). The flow rates of exogenous N indicated a delayed gastric emptying of the yoghurt N compared with N from milk. The jejunal non-protein N (NPN) flow rate increased significantly after milk and yoghurt ingestion due to an increase in the exogenous NPN flow rate. The NPN fraction of exogenous N ranged between 40 and 80%. The net gastro-jejunal absorption of exogenous N did not differ significantly between milk (56.7(SEM 8.5)%) and yoghurt (50.9(SEM 7)%). The high level of exogenous N hydrolysis is in accordance with the good digestibility of milk products. Fermentation modifies only the gastric emptying rate of N and does not affect the level of diet hydrolysis, the endogenous N stimulation or the digestibility rate.
British Journal of Nutrition | 1994
Sylvain Mahé; Philippe Marteau; Jean-François Huneau; F. Thuillier; Daniel Tomé
The present study focuses on the digestion and absorption of milk and fermented milk (FM) reflected by gastro-ileal N and electrolyte movements in six healthy volunteers. The N and electrolyte content of the intestinal effluents were analysed both at the beginning of the jejunum and in the distal ileum. The gastric half-emptying time of the liquid phase was significantly (P < 0.05) shorter for milk (35 (SE 2) min) than for FM (60 (SE 2) min). The N balance showed that 58 and 50% of ingested proteins, milk and FM respectively were absorbed between the stomach and the proximal jejunum and that 91 and 90% respectively were absorbed between the stomach and the terminal ileum in 240 min. Evaluation of mineral absorption indicated that 44 and 67% of Ca was absorbed in the duodenum after milk and FM ingestion respectively, and 41 and 11% of Ca disappeared between the jejunum and the ileum respectively. With regards to N and Ca intestinal availability, the present study confirms that FM products represent an interesting source of N as well as minerals for man. This confers on FM a beneficial effect compared with milk especially for lactase (EC 3.2.1.108)-deficient subjects and children with persistent diarrhoea.
British Journal of Nutrition | 1996
Nicolas Gausserès; Sylvain Mahé; Robert Benamouzig; Catherine Luengo; Henriette Drouet; Jacques Rautureau; Daniel Tomé
The aim of the present study was to determine the gastro-ileal behaviour of pea protein in humans. For this purpose, twelve healthy volunteers were intubated with an intestinal tube located either in the jejunum (n 5) or in the ileum (n 7). After fasting overnight, they ingested 195 mmol N of [15N]pea. Intestinal samples were collected for 6 h in the jejunum and for 8 h in the ileum. Before meal ingestion the basal liquid flow rate (ml/min) was 2.01 (SD 0.31) in the jejunum and 2.02 (SD 0.33) in the ileum. After meal ingestion the liquid phase of the meal peaked in the 40-60 min period in the jejunum and in the 150-180 min period in the ileum. The jejuno-ileal transit time of the liquid phase of the meal was 102 min. The basal flow rate of endogenous N (mmol N/min) was 0.22 (SD 0.15) in the jejunum and 0.16 (SD 0.10) in the ileum. The endogenous N flow rate peaked significantly (P < 0.05) in the jejunum in the 40-60 min period whereas no stimulation of endogenous N could be detected in the ileum after meal ingestion. A significantly increased (P < 0.05) concentration of exogenous N was detected in the jejunum during the 20-320 min period and during the 90-480 min period in the ileum. The overall true gastro-ileal absorption of pea N was 89.4 (SD 1.1)% with 69 (SD 14)% absorbed between the stomach and the proximal jejunum and 20.4% between the proximal jejunum and the terminal ileum. The percentage of ethanol-insoluble fraction (PN) in the exogenous N at the terminal ileum increased significantly (P < 0.05) to 75% after 360 min. These results suggest that heat-treated pea protein has a digestibility close to that of animal protein.
Current Opinion in Clinical Nutrition and Metabolic Care | 2000
François Mariotti; Jean-François Huneau; Sylvain Mahé; Daniel Tomé
Abstract This paper reviews the recent literature concerning the importance of the gut in extraintestinal protein metabolism. A growing body of evidence suggests that the gut modulates amino acid flux and inter‐organ relationships in various metabolic states. This may be particularly true during the absorptive period, when the gut: (1) controls amino acid absorption; (2) may modulate catabolism and uptake for synthesis of absorbed amino acid; and (3) consequently influences the availability of liver and extrasplanchnic amino acids, as well as their pattern and kinetics through portal flow delivery.
British Journal of Nutrition | 2002
François Mariotti; Maria E. Pueyo; Daniel Tomé; Sylvain Mahé
Sweet lupin (Lupinus albus), a protein-rich legume devoid of anti-nutritional factors, is considered to have a high potential for protein nutrition in man. Results concerning the nutritional value of lupin protein are, however, conflicting in animals and very scarce in human subjects. Furthermore, where fibre-rich protein sources are concerned, the long-term nutritional results are often obscured, particularly since fibre-promoted colonic fermentation may bias the energy supply and redistribute N flux. We therefore studied, during the postprandial phase, the bioavailability and utilisation of lupin-flour protein in nine healthy men who had ingested a mixed meal containing intrinsically 15N-labelled lupin flour as the protein source (Expt 1). The real ileal digestibility (RID) and ileal endogenous N losses (IENL) were assessed using a perfusion technique at the terminal ileum, and the N content and 15N enrichment of ileal samples. Lupin flour exhibited a high RID of 91 (SD 3)% and low IENL (5-4 (SD 1.3) mmol N/h). Postprandial dietary deamination was also assessed from body dietary urea and urinary dietary N excretion, and compared with results in nine healthy men following an iso-energetic meal containing a 15N-soyabean-protein isolate with a similar RID, as a control (Expt 2). Postprandial dietary deamination was similar after lupin and soyabean meals (17 (SD 2) and 18 (SD 4)% ingested N respectively). We therefore conclude that lupin protein is highly bioavailable, even if included in fibre-rich flour, and that it can be used with the same efficiency as soyabean protein to achieve postprandial protein gain in healthy human subjects.
British Journal of Nutrition | 1994
Agnès Baglieri; Sylvain Mahé; Semia Zidi; Jean-François Huneau; F. Thuillier; Philippe Marteau; Daniel Tomé
In order to determine how soya-bean proteins are digested and metabolized in the human intestine before colonic bacterial fermentation and to estimate their true digestibility, the gastro-jejunal behaviour of soya-bean proteins in water and in two other forms (a concentrated soya-bean-protein solution (isolate) and a drink composed of crude soya-bean proteins (soymilk)) was studied in humans. Experiments were carried out in eight healthy volunteers using a double-lumen steady-state intestinal perfusion method with polyethyleneglycol (PEG) as a non-absorbable volume marker. Gastric emptying and N and electrolyte contents of the jejunal digesta were analysed. Gastric half-emptying time (min) of the liquid phase after water ingestion (12.59 (SE 0.12)) was shorter (P < 0.05) than those for soymilk (37.74 (SE 11.57)) and isolate (36.52 (SE 11.23)). Electrolytic balances showed that for all meals, Na+, Cl- and K+ were secreted when Ca2+ was efficiently absorbed from the jejunal lumen. Gastro-jejunal N absorption for isolate and soymilk were 63 and 49% respectively, and were not significantly different from one another; after water ingestion, endogenous N was estimated to be 21 mmol. An estimate of the exogenous:endogenous values for the effluents was obtained from the amino acid compositions of soymilk and effluents after water or soymilk ingestion, indicating that 70% of the total N was exogenous and 30% endogenous. Under these conditions the endogenous fraction represented 31 mmol after soymilk ingestion and the gastro-jejunal N balance indicated that 54% of the soymilk was absorbed. This finding indicates that the true gastrojejunal digestibility of soya-bean proteins is similar to that of milk proteins.
Biochimie | 1987
Lucie Frémont; Véronique Duranthon; Marie-Thérèse Gozzelino; Sylvain Mahé
In rainbow trout (Salmo gairdnerii) lipoprotein profiles change during the annual sexual cycle. Among other factors, lipoprotein lipase (LPL) activity might play a role. This enzyme is activated by trout serum suggesting the existence of a cofactor corresponding to apoprotein CII in this species. In the present study, we determined more accurately some characteristics of the enzyme activity inhibited by 0.3 M NaCl. Trout serum and high density lipoproteins (HDL) activated both rat and trout adipose tissue LPLs. A fraction of apo HDL obtained by gel filtration also activated the enzyme. The mean Mr was 10,000. Isoelectric focusing of the same fraction gave several bands of proteins with apparent pI in the range of 4.2-4.9. These results show that in trout, LPL is activated by a cofactor similar to that in mammals, the apo CII. In addition, a fraction mainly containing apo AI (+ traces of apo C) activated trout LPL and reinforced the activation by apo CII. These findings suggest that trout apo AI may promote the activating effect of apo CII on trout LPL.