Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Milot is active.

Publication


Featured researches published by Sylvain Milot.


Molecular Microbiology | 2006

MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR‐class regulatory protein, has dual ligands

Gaoping Xiao; Eric Déziel; Jianxin He; François Lépine; Biliana Lesic; Marie-Hélène Castonguay; Sylvain Milot; Anastasia P. Tampakaki; Scott Stachel; Laurence G. Rahme

MvfR (PqsR), a Pseudomonas aeruginosa LysR‐type transcriptional regulator, plays a critical role in the virulence of this pathogen. MvfR modulates the expression of multiple quorum sensing (QS)‐regulated virulence factors; and the expression of the phnAB and pqsA‐E genes that encode functions mediating 4‐hydroxy‐2‐alkylquinolines (HAQs) signalling compounds biosynthesis, including 3,4‐dihydroxy‐2‐heptylquinoline (PQS) and its precursor 4‐hydroxy‐2‐heptylquinoline (HHQ). PQS enhances the in vitro DNA‐binding affinity of MvfR to the pqsA‐E promoter, to suggest it might function as the in vivo MvfR ligand. Here we identify a novel MvfR ligand, as we show that HHQ binds to the MvfR ligand‐binding‐domain and potentiates MvfR binding to the pqsA‐E promoter leading to transcriptional activation of pqsA‐E genes. We show that HHQ is highly produced in vivo, where it is not fully converted into PQS, and demonstrate that it is required for MvfR‐dependent gene expression and pathogenicity; PQS is fully dispensable, as pqsH– mutant cells, which produce HHQ but completely lack PQS, display normal MvfR‐dependent gene expression and virulence. Conversely, PQS is required for full production of pyocyanin. These results uncover a novel biological role for HHQ; and provide novel insights on MvfR activation that may aid in the development of therapies that prevent or treat P. aeruginosa infections in humans.


Biochimica et Biophysica Acta | 2000

Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP

Eric Déziel; François Lépine; Sylvain Milot; Richard Villemur

Two rapid and simple methods for the characterisation and quantification of rhamnolipids produced by a growing culture of the Pseudomonas aeruginosa strain 57RP were developed. Two rhamnolipids were purified and their response factors determined. The various rhamnolipids produced were then measured using liquid chromatography/mass spectrometry. The culture supernatants were injected directly, without prior purification, in a HPLC equipped with a C(18) reverse-phase column. The complete profile of rhamnolipid congeners produced during a 2 week cultivation period was monitored. In order to shorten the analysis time, another method was developed which did not require chromatographic separation of the rhamnolipids prior to their detection. Quantification of rhamnolipids using the direct infusion method gave results very similar to those obtained with HPLC separation. These two methods were very well correlated with the standard colorimetric orcinol method. The rhamnolipid profiles obtained show that the various rhamnolipid congeners are secreted simultaneously, and that their relative proportion remained unchanged throughout the cultivation period.


Biochimica et Biophysica Acta | 2003

A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures

François Lépine; Eric Déziel; Sylvain Milot; Laurence G. Rahme

A stable isotope dilution method was developed to analyse 2-heptyl-3,4-dihydroxyquinoline, also called the Pseudomonas quinolone signal (PQS), directly in Pseudomonas aeruginosa cultures by liquid chromatography coupled to mass spectrometry (LC/MS). PQS, along with the isobaric 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), were quantified in various Pseudomonas liquid cultures using a deuterated PQS analog as internal standard. The kinetic of production of these quinolines in a growing culture of P. aeruginosa PA14 showed that their production starts at the end of the logarithmic growth phase and is maximal at the onset of the stationary growth phase. The concentration of PQS reached a maximum at 13 mg/l and then decreased, while the HQNO concentration reached 18 mg/l and then remained stable. Culture supernatants of P. aeruginosa strains PAO1 and PA14 produced similar concentrations of PQS whereas no PQS or HQNO could be detected in culture supernatants of the P. aeruginosa strain PAK or in the other Pseudomonas species tested, including phytopathogenic pseudomonads.


PLOS Pathogens | 2014

Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity

Melissa Starkey; François Lépine; Damien Maura; Arunava Bandyopadhaya; Biliana Lesic; Jianxin He; Tomoe Kitao; Valeria Righi; Sylvain Milot; A. Aria Tzika; Laurence G. Rahme

Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections.


Infection and Immunity | 2008

Specific Roles of the iroBCDEN Genes in Virulence of an Avian Pathogenic Escherichia coli O78 Strain and in Production of Salmochelins

Mélissa Caza; François Lépine; Sylvain Milot; Charles M. Dozois

ABSTRACT Avian pathogenic Escherichia coli (APEC) strains are a subset of extraintestinal pathogenic E. coli (ExPEC) strains associated with respiratory infections and septicemia in poultry. The iroBCDEN genes encode the salmochelin siderophore system present in Salmonella enterica and some ExPEC strains. Roles of the iro genes for virulence in chickens and production of salmochelins were assessed by introducing plasmids carrying different combinations of iro genes into an attenuated salmochelin- and aerobactin-negative mutant of O78 strain χ7122. Complementation with the iroBCDEN genes resulted in a regaining of virulence, whereas the absence of iroC, iroDE, or iroN abrogated restoration of virulence. The iroE gene was not required for virulence, since introduction of iroBCDN restored the capacity to cause lesions and colonize extraintestinal tissues. Prevalence studies indicated that iro sequences were associated with virulent APEC strains. Liquid chromatography-mass spectrometry analysis of supernatants of APEC χ7122 and the complemented mutants indicated that (i) for χ7122, salmochelins comprised 14 to 27% of the siderophores present in iron-limited medium or infected tissues; (ii) complementation of the mutant with the iro locus increased levels of glucosylated dimers (S1 and S5) and monomer (SX) compared to APEC strain χ7122; (iii) the iroDE genes were important for generation of S1, S5, and SX; (iv) iroC was required for export of salmochelin trimers and dimers; and (v) iroB was required for generation of salmochelins. Overall, efficient glucosylation (IroB), transport (IroC and IroN), and processing (IroD and IroE) of salmochelins are required for APEC virulence, although IroE appears to serve an ancillary role.


Chemistry & Biology | 2013

The End of an Old Hypothesis: The Pseudomonas Signaling Molecules 4-Hydroxy-2-Alkylquinolines Derive from Fatty Acids, Not 3-Ketofatty Acids

Carlos Eduardo Dulcey; Valérie Dekimpe; David-Alexandre Fauvelle; Sylvain Milot; Marie-Christine Groleau; Nicolas Doucet; Laurence G. Rahme; François Lépine; Eric Déziel

Groups of pathogenic bacteria use diffusible signals to regulate their virulence in a concerted manner. Pseudomonas aeruginosa uses 4-hydroxy-2-alkylquinolines (HAQs), including 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), as unique signals. We demonstrate that octanoic acid is directly incorporated into HHQ. This finding rules out the long-standing hypothesis that 3-ketofatty acids are the precursors of HAQs. We found that HAQ biosynthesis, which requires the PqsABCD enzymes, proceeds by a two-step pathway: (1) PqsD mediates the synthesis of 2-aminobenzoylacetate (2-ABA) from anthraniloyl-coenzyme A (CoA) and malonyl-CoA, then (2) the decarboxylating coupling of 2-ABA to an octanoate group linked to PqsC produces HHQ, the direct precursor of PQS. PqsB is tightly associated with PqsC and required for the second step. This finding uncovers promising targets for the development of specific antivirulence drugs to combat this opportunistic pathogen.


PLOS Pathogens | 2011

A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes.

Meenu Kesarwani; Ronen Hazan; Jianxin He; Yok-Ai Que; Yiorgos Apidianakis; Biliana Lesic; Gaoping Xiao; Valérie Dekimpe; Sylvain Milot; Eric Déziel; François Lépine; Laurence G. Rahme

A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections.


Applied Microbiology and Biotechnology | 1995

Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium

Pierre Juteau; Réjean Beaudet; G. McSween; François Lépine; Sylvain Milot; Jean-Guy Bisaillon

An anaerobic consortium degrading pentachlorophenol (PCP) by methanogenic fermentation was enriched from PCP-contaminated soils. In a semi-continuous reactor, PCP biodegradation was unstable and necessitated periodic additions of unacclimated anaerobic sludge waste to restore the activity. In continuous-flow reactors, PCP degradation activity was more stable when a mixture of glucose and sodium formate was used as secondary carbon source instead of glucose. The analysis of the chlorophenol intermediates suggested that the main pathway of PCP dechlorination was PCP → 2,3,5,6-tetrachlorophenol → 2,3,5-trichlorophenol → 3,5-dichlorophenol → 3-chlorophenol → phenol. In a laboratory-scale continuous-upflow fixed-film column reactor, a PCP removal of more than 99% was achieved at a PCP loading rate of 60 μmol (1 reactor volume)−1 day−1 for a hydraulic retention time of 0.7 day. Analysis of culture samples taken at different levels in the reactor have shown that, at this PCP loading rate, only the lower part of the reactor was active. 3-chlorophenol and 3,5- and 3,4-dichlorophenol were detected at the different levels of the reactor. A study of the microorganisms in the biofilm was carried out by scanning electron microscopy and suggested that the microorganisms involved in the consortium were present as a well-structured arrangement. Methanosaeta-like microorganisms were observed mainly at the base of the biofilm whereas, at the surface, a larger diversity of morphotypes was observed in which coccoid or small rod organisms were dominant. This work shows the importance of the design and the control of the operation parameters on the efficiency of the fixed-film reactor.


International Journal of Oncology | 2013

Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model

A. Aria Tzika; Cibely Cristine Fontes-Oliveira; Alexander A. Shestov; Caterina Constantinou; Nikolaos Psychogios; Valeria Righi; Dionyssios Mintzopoulos; Sílvia Busquets; Francisco J. López-Soriano; Sylvain Milot; François Lépine; Michael Mindrinos; Laurence G. Rahme; Josep M. Argilés

Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel ‘fragmented mass isotopomer’ approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.


Biological Chemistry | 2007

PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis

François Lépine; Valérie Dekimpe; Biliana Lesic; Sylvain Milot; Alain Lesimple; Orval Mamer; Laurence G. Rahme; Eric Déziel

Abstract A new metabolite, 2,4-dihydroxyquinoline (DHQ), was identified in cultures of the bacteria Pseudomonas aeruginosa and Burkholderia thailandensis. We found that the biosynthesis of DHQ correlates with the presence of a functional PqsA, which is a product of the pqsABCDE operon responsible for the synthesis of 4-hydroxy-2-alkylquinolines (HAQs) in P. aeruginosa. However, DHQ is not a degradation product or precursor of HAQs. This finding sheds some light on the poorly understood biosynthesis pathway of HAQs, which includes important communication signals regulating the expression of virulence factors.

Collaboration


Dive into the Sylvain Milot's collaboration.

Top Co-Authors

Avatar

François Lépine

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric Déziel

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie-Christine Groleau

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Richard Villemur

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Valérie Dekimpe

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge