Sylvain Moineau
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvain Moineau.
Science | 2007
Rodolphe Barrangou; Christophe Fremaux; Hélène Deveau; Melissa Richards; Patrick Boyaval; Sylvain Moineau; Dennis A. Romero; Philippe Horvath
Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.
Nature | 2010
Josiane E. Garneau; Marie-Ève Dupuis; Manuela Villion; Dennis A. Romero; Rodolphe Barrangou; Patrick Boyaval; Christophe Fremaux; Philippe Horvath; Alfonso H. Magadán; Sylvain Moineau
Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.
Nature Reviews Microbiology | 2010
Simon J. Labrie; Julie E. Samson; Sylvain Moineau
Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.
Journal of Bacteriology | 2008
Hélène Deveau; Rodolphe Barrangou; Josiane E. Garneau; Jessica M. Labonté; Christophe Fremaux; Patrick Boyaval; Dennis A. Romero; Philippe Horvath; Sylvain Moineau
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.
Nature Reviews Microbiology | 2015
Kira S. Makarova; Yuri I. Wolf; Omer S. Alkhnbashi; Fabrizio Costa; Shiraz A. Shah; Sita J. Saunders; Rodolphe Barrangou; Stan J. J. Brouns; Emmanuelle Charpentier; Daniel H. Haft; Philippe Horvath; Sylvain Moineau; Francisco J. M. Mojica; Rebecca M. Terns; Michael P. Terns; Malcolm F. White; Alexander F. Yakunin; Roger A. Garrett; John van der Oost; Rolf Backofen; Eugene V. Koonin
The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.
Journal of Bacteriology | 2008
Philippe Horvath; Dennis A. Romero; Anne-Claire Coûté-Monvoisin; Melissa Richards; Hélène Deveau; Sylvain Moineau; Patrick Boyaval; Christophe Fremaux; Rodolphe Barrangou
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.
Annual Review of Microbiology | 2010
Hélène Deveau; Josiane E. Garneau; Sylvain Moineau
Clustered regularly interspaced short palindromic repeats (CRISPRs) along with Cas proteins is a widespread system across bacteria and archaea that causes interference against foreign nucleic acids. The CRISPR/Cas system acts in at least two general stages: the adaptation stage, where the cell acquires new spacer sequences derived from foreign DNA, and the interference stage, which uses the recently acquired spacers to target and cleave invasive nucleic acid. The CRISPR/Cas system participates in a constant evolutionary battle between phages and bacteria through addition or deletion of spacers in host cells and mutations or deletion in phage genomes. This review describes the recent progress made in this fast-expanding field.
Nature Reviews Microbiology | 2013
Julie E. Samson; Alfonso H. Magadán; Mourad Sabri; Sylvain Moineau
Bacteria and their viral predators (bacteriophages) are locked in a constant battle. In order to proliferate in phage-rich environments, bacteria have an impressive arsenal of defence mechanisms, and in response, phages have evolved counter-strategies to evade these antiviral systems. In this Review, we describe the various tactics that are used by phages to overcome bacterial resistance mechanisms, including adsorption inhibition, restriction–modification, CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems and abortive infection. Furthermore, we consider how these observations have enhanced our knowledge of phage biology, evolution and phage–host interactions.
Microbiology and Molecular Biology Reviews | 2008
Daniel Verreault; Sylvain Moineau; Caroline Duchaine
SUMMARY To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses.
Molecular Microbiology | 2001
Martin Duplessis; Sylvain Moineau
Phage–host interactions remain poorly understood in lactic acid bacteria and essentially in all Gram‐positive bacteria. The aim of this study was to identify the phage genetic determinant (anti‐receptor) involved in the recognition of Streptococcus thermophilus hosts. The complete genomic sequence of the lytic S. thermophilus phage DT1 was determined previously, and bioinformatic analysis indicated that orf18 might be the anti‐receptor gene. The orf18 of six additional S. thermophilus phages was determined (DT2, DT4, MD1, MD2, MD4 and Q5) and compared with the orf18 of DT1. The deduced ORF18 was divided into three domains. The first domain, which contains the N‐terminal part of the protein, was conserved in all seven phages. The second domain was detected in only two phages and flanked by a motif called collagen‐like repeats. The second domain also contained a variable region (VR1). All seven phages had a third domain that consisted of the C‐terminal section of the protein as well as another variable region (VR2). Chimeric DT1 phages were constructed by recombination; a portion of its orf18 was replaced by the corresponding section in orf18 of the phage MD4. All DT1 chimeric phages acquired the host range of phage MD4. Analysis of the orf18 in the chimeric phages revealed that host specificity in phages DT1 and MD4 resulted from VR2. This is the first report on the identification and characterization of a phage gene involved in the host recognition process of Gram‐positive bacteria.