Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Prévost is active.

Publication


Featured researches published by Sylvain Prévost.


Advanced Materials | 2014

Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces.

Qiang Wei; Christoph Schlaich; Sylvain Prévost; Andrea Schulz; Christoph Böttcher; Michael Gradzielski; Zhenhui Qi; Rainer Haag; Christoph A. Schalley

Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing.


Langmuir | 2011

Self-aggregation of mixtures of oppositely charged polyelectrolytes and surfactants studied by rheology, dynamic light scattering and small-angle neutron scattering.

Ingo Hoffmann; Peggy Heunemann; Sylvain Prévost; Ralf Schweins; Norman J. Wagner; Michael Gradzielski

In this study, the phase behavior, structure and properties of systems composed of the cationic, cellulose-based polycation JR 400 and the anionic surfactants sodium dodecylbenzenesulfonate (SDBS) or sodium dodecylethoxysulfate (SDES), mainly in the semidilute regime, were examined. This system shows the interesting feature of a very large viscosity increase by nearly 4 orders of magnitude as compared to the pure polymer solution already at very low concentrations of 1 wt%. By using rheology, dynamic light scattering (DLS), and small-angle neutron scattering (SANS), we are able to deduce systematic correlations between the molecular composition of the systems (characterized by the charge ratio Z=[+(polymer)]/[−(surfactant)]), their structural organization and the resulting macroscopic flow behavior. Mixtures in the semidilute regime with an excess of polycation charge form highly viscous network structures containing rodlike aggregates composed of surfactant and polyelectrolyte that are interconnected by the long JR 400 chains. Viscosity and storage modulus follow scaling laws as a function of surfactant concentration (η~c(s)(4); G(0)~c(s)(1.5)) and the very pronounced viscosity increase mainly arises from the strongly enhanced structural relaxation time of the systems. In contrast, mixtures with excess surfactant charges form solutions with viscosities even below those of the pure polymer solution. The combination of SANS, DLS, and rheology shows that the structural, dynamical, and rheological properties of these oppositely charged polyelectrolyte/surfactant systems can be controlled in a systematic fashion by appropriately choosing the systems composition.


Proceedings of the National Academy of Sciences of the United States of America | 2016

How to explain microemulsions formed by solvent mixtures without conventional surfactants

Thomas Zemb; Michael L. Klossek; Tobias Lopian; Julien Marcus; Sebastian Schöettl; Dominik Horinek; Sylvain Prévost; Didier Touraud; Olivier Diat; Stjepan Marčelja; Werner Kunz

Significance Beginning over 40 y ago, a curious type of microemulsions—as transparent dispersion of two immiscible liquids separated by an interfacial film—at thermodynamic equilibrium has been described as “pre-Ouzo,” “detergentless,” or surfactant-free microemulsions. The experiments in ternary systems containing one hydrotropic cosolvent were ambiguous, and therefore, there was no need to come up with a general theory. Recent evidence obtained by specific deuteration in neutron scattering established the need for the extension of self-assembly theories based on Derjaguin-Landau-Verwey-Overbeck theory (DLVO), bending, or phase transfer energy. Here, we introduce a general free energy expression for weak self-assembly, where solvation effects and entropy compete without the influence of film bending, that explains all experimental results for this class of microemulsions. Ternary solutions containing one hydrotrope (such as ethanol) and two immiscible fluids, both being soluble in the hydrotrope at any proportion, show unexpected solubilization power and allow strange but yet unexplained membrane enzyme activity. We study the system ethanol-water-octanol as a simple model of such kinds of ternary solutions. The stability of “detergentless” micelles or microemulsions in such mixtures was proposed in the pioneering works of Barden and coworkers [Smith GD, Donelan CE, Barden RE (1977) J Colloid Interface Sci 60(3):488–496 and Keiser BA, Varie D, Barden RE, Holt SL (1979) J Phys Chem 83(10):1276–1281] in the 1970s and then, neglected, because no general explanation for the observations was available. Recent direct microstructural evidence by light, X-ray, and neutron scattering using contrast variation reopened the debate. We propose here a general principle for solubilization without conventional surfactants: the balance between hydration force and entropy. This balance explains the stability of microemulsions in homogeneous ternary mixtures based on cosolvents.


Langmuir | 2013

Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics.

Carolina Aubery; Conxita Solans; Sylvain Prévost; Michael Gradzielski; Margarita Sanchez-Dominguez

Phase behavior, dynamics, and structure of W/O microemulsions of the system aqueous solution/Synperonic 13_6.5/1-hexanol/isooctane were studied, with the goal of determining their effect on Mn-Zn ferrite nanoparticle formation, kinetics and characteristics. Microemulsion structure and dynamics were studied systematically by conductivity, dynamic light scattering (DLS), differential scanning calorimetry (DSC), and small-angle neutron scattering (SANS). The main effect of cosurfactant 1-hexanol was a decrease in microemulsion regions as compared to the systems without cosurfactant; nevertheless, overlap of microemulsion regions in the systems with precursor salts (PS) and precipitating agent (PA) was achieved at lower S/O ratios, compared to the system without cosurfactant. At 50 °C, PA microemulsions are nonpercolated, while PS microemulsions are percolated. SANS indicates small prolate ellipsoidal micelles with the absence of free water up to 18 wt % PS solution; DSC studies confirm the absence of free water in this composition range. Kinetic studies show an increase in the reaction rate with increasing concentration of the aqueous solution; but the most significant effect in reaction kinetics was noted when cosurfactant was used, regardless of microemulsion dynamics and structure. On the other hand, the main difference regarding the characteristics of the obtained nanoparticles was observed when bicontinuous microemulsions were used as reaction media which resulted in 8 nm nanoparticles, versus a constant size of ~4 nm obtained with all other microemulsions regardless of aqueous solution content, dynamics, and presence or absence of cosurfactant. The latter effect of constant size is attributed to the fact that the water present is dominantly bound to the EO units of the surfactant.


Langmuir | 2016

Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals

Martin Uhlig; Andreas B. Fall; Stefan Wellert; Maren Lehmann; Sylvain Prévost; Lars Wågberg; Regine von Klitzing; Gustav Nyström

The structural properties and aggregation behavior of carboxymethylated cellulose nanocrystals (CNC-COOH) were analyzed with small angle neutron scattering (SANS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) and compared to sulfuric acid hydrolyzed cellulose nanocrystals (CNC-SO3H). The CNC-COOH system, prepared from single carboxymethylated cellulose nanofibrils, was shown to laterally aggregate into 2D-stacks that were stable both in bulk solution and when adsorbed to surfaces. CNC-SO3H also showed a 2D aggregate structure with similar cross sectional dimensions (a width to height ratio of 8) as CNC-COOH, but a factor of 2 shorter length. SANS and DLS revealed a reversible ordering of the 2D aggregates under semidilute conditions, and a structure peak was observed for both systems. This indicates an early stage of liquid crystalline arrangement of the crystal aggregates, at concentrations below those assessed using birefringence or polarized optical microscopy.


Journal of Physical Chemistry B | 2008

Aqueous laponite clay dispersions in the presence of poly(ethylene oxide) or poly(propylene oxide) oligomers and their triblock copolymers.

R. De Lisi; Michael Gradzielski; Giuseppe Lazzara; S. Milioto; N. Muratore; Sylvain Prévost

The effect of polyethylene oxide (PEO) or polypropylene oxide (PPO) oligomers of various molecular weight (Mw) as well as of triblock copolymers, based on PEO and PPO blocks, on aqueous laponite RD suspensions was studied with small-angle neutron scattering (SANS). The radius of gyration (RG) increases for low M w whereas the opposite occurs for larger Mw. This behavior is explained on the basis that an effective R G is given by two contributions: (1) the size of the particles coated with the polymer and (2) the interactions between the laponite RD particles which are attractive for small and repulsive for large polymers. The SANS curves in the whole Q-range are well described by a model of noninteracting polydisperse core+shell disks, where the thickness of the polymer layer increases with the Mw. The adsorbed polymer is in a more compact conformation compared to a random coil distribution while the fraction of the polymer in the shell formed around the laponite RD particles is nearly independent of Mw. For increasing laponite RD amounts, at a given polymer composition, the thickness of the polymer slightly changes. In some cases, where also gelation is sped up, a structure factor with attractive interaction was employed which allowed to evaluate the attractive forces between the laponite RD particles. The gelation time was determined for mixtures at fixed copolymer and laponite RD concentrations. Surprisingly, it is observed that gels are formed despite the fact that the binding sites of the laponite RD particles are almost covered but the polymer size is too small to prevent aggregation. The gelation rate is correlated to structure and thermodynamics of these systems. Namely, when the balance between the steric forces and the depletion attractive forces undergoes an abrupt change the gelation time also undergoes a sharp variation. For lower and comparable Mw, PPO speeds up the gelation more efficiently than PEO while for higher Mw the gelation kinetics is slowed down again. Interestingly, copolymers of PEO and PPO blocks do not induce gelation in the time-window where the homopolymers do.


Polymer Chemistry | 2011

Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces

Daniel Zehm; André Laschewsky; Peggy Heunemann; Michael Gradzielski; Sylvain Prévost; Hua Liang; Juergen P. Rabe; Jean-François Lutz

The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent “giant surfactants” according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the “semi-brush” precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains.


Nano Letters | 2014

Noncanonical Self-Assembly of Highly Asymmetric Genetically Encoded Polypeptide Amphiphiles into Cylindrical Micelles

Jonathan R. McDaniel; Isaac Weitzhandler; Sylvain Prévost; Kevin B. Vargo; Marie-Sousai Appavou; Daniel A. Hammer; Michael Gradzielski; Ashutosh Chilkoti

Elastin-like polypeptides (ELPs) are a class of biopolymers consisting of the pentameric repeat (VPGαG)n based on the sequence of mammalian tropoelastin that display a thermally induced soluble-to-insoluble phase transition in aqueous solution. We have discovered a remarkably simple approach to driving the spontaneous self-assembly of high molecular weight ELPs into nanostructures by genetically fusing a short 1.5 kDa (XGy)z assembly domain to one end of the ELP. Classical theories of self-assembly based on the geometric mass balance of hydrophilic and hydrophobic block copolymers suggest that these highly asymmetric polypeptides should form spherical micelles. Surprisingly, when sufficiently hydrophobic amino acids (X) are presented in a periodic sequence such as (FGG)8 or (YG)8, these highly asymmetric polypeptides self-assemble into cylindrical micelles whose length can be tuned by the sequence of the morphogenic tag. These nanostructures were characterized by light scattering, tunable resistive pulse sensing, fluorescence spectrophotometry, and thermal turbidimetry, as well as by cryogenic transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS). These short assembly domains provide a facile strategy to control the size, shape, and stability of stimuli responsive polypeptide nanostructures.


Langmuir | 2014

Chitosan/alkylethoxy carboxylates: a surprising variety of structures.

Leonardo Chiappisi; Sylvain Prévost; Isabelle Grillo; Michael Gradzielski

In this work, we present a comprehensive structural characterization of long-term stable complexes formed by biopolycation chitosan and oppositely charged nonaoxyethylene oleylether carboxylate. These two components are attractive for many potential applications, with chitosan being a bioderived polymer and the surfactant being ecologically benign and mild. Experiments were performed at different mixing ratios Z (ratio of the nominal charges of surfactant/polyelectrolyte) and different pH values such that the degree of ionization of the surfactant is largely changed whereas that of chitosan is only slightly affected. The structural characterization was performed by combining static and dynamic light scattering (SLS and DLS) and small-angle neutron scattering (SANS) to cover a large structural range. Highly complex behavior is observed, with three generic structures formed that depend on pH and the mixing ratio, namely, (i) a micelle-decorated network at low Z and pH, (ii) rodlike complexes with the presence of aligned micelles at medium Z and pH, and (iii) compacted micellar aggregates forming a supraaggregate surrounded by a chitosan shell at high Z and pH. Accordingly, the state of aggregation in these mixtures can be tuned structurally over quite a range only by rather small changes in pH.


ACS Nano | 2012

Shaping Vesicles–Controlling Size and Stability by Admixture of Amphiphilic Copolymer

Katharina Bressel; Michael Muthig; Sylvain Prévost; Jérémie Gummel; Theyencheri Narayanan; Michael Gradzielski

The production of structurally well-defined unilamellar vesicles and the control of their stability are of utmost importance for many of their applications but still a largely unresolved practical issue. In the present work we show that by admixing small amounts of amphiphilic copolymer to the original components of a spontaneously vesicle-forming surfactant mixture we are able to control the self-assembly process in a systematic way. For this purpose we employed a zwitanionic model system of zwitterionic TMDAO and anionic LiPFOS. As the copolymer reduces the line tension of the intermediately formed disks, this translates directly into a longer disk growth phase and formation of correspondingly larger vesicles. By this approach we are able to vary their size over a large range and produce vesicles of extremely low polydispersity. Furthermore, the temporal stability of the formed vesicles is enhanced by orders of magnitude in proportion to the concentration of copolymer added. This is achieved by exerting kinetic control that allows engineering the vesicle structure via a detailed knowledge of the formation pathway as obtained by highly time-resolved SAXS experiments. Synthesis of such very well-defined vesicles by the method shown should in general be applicable to catanionic or zwitanionic amphiphiles and will have far reaching consequences for controlled nanostructure formation and application of these self-assembled systems.

Collaboration


Dive into the Sylvain Prévost's collaboration.

Top Co-Authors

Avatar

Michael Gradzielski

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Chiappisi

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Thomas Zemb

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ingo Hoffmann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Diat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Muthig

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge