Sylvain Thierry
École normale supérieure de Cachan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvain Thierry.
Antimicrobial Agents and Chemotherapy | 2010
Olivier Delelis; Sylvain Thierry; Frédéric Subra; Françoise Simon; Isabelle Malet; Chakib Alloui; Sophie Sayon; Vincent Calvez; Eric Deprez; Anne-Geneviève Marcelin; Luba Tchertanov; Jean-François Mouscadet
ABSTRACT Integrase (IN), the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiviral raltegravir (RAL). Despite this drugs activity against viruses resistant to other antiretrovirals, failures of raltegravir therapy were observed, in association with the emergence of resistance due to mutations in the integrase coding region. Two pathways involving primary mutations on residues N155 and Q148 have been characterized. It was suggested that mutations at residue Y143 might constitute a third primary pathway for resistance. The aims of this study were to investigate the susceptibility of HIV-1 Y143R/C mutants to raltegravir and to determine the effects of these mutations on the IN-mediated reactions. Our observations demonstrate that Y143R/C mutants are strongly impaired for both of these activities in vitro. However, Y143R/C activity can be kinetically restored, thereby reproducing the effect of the secondary G140S mutation that rescues the defect associated with the Q148R/H mutants. A molecular modeling study confirmed that Y143R/C mutations play a role similar to that determined for Q148R/H mutations. In the viral replicative context, this defect leads to a partial block of integration responsible for a weak replicative capacity. Nevertheless, the Y143 mutant presented a high level of resistance to raltegravir. Furthermore, the 50% effective concentration (EC50) determined for Y143R/C mutants was significantly higher than that obtained with G140S/Q148R mutants. Altogether our results not only show that the mutation at position Y143 is one of the mechanisms conferring resistance to RAL but also explain the delayed emergence of this mutation.
Retrovirology | 2013
Soundasse Munir; Sylvain Thierry; Frédéric Subra; Eric Deprez; Olivier Delelis
BackgroundHIV-1 DNA is found both integrated in the host chromosome and unintegrated in various forms: linear (DNAL) or circular (1-LTRc, 2-LTRc or products of auto-integration). Here, based on pre-established strategies, we extended and characterized in terms of sensitivity two methodologies for quantifying 1-LTRc and DNAL, respectively, the latter being able to discriminate between unprocessed or 3′-processed DNA.ResultsQuantifying different types of viral DNA genome individually provides new information about the dynamics of all viral DNA forms and their interplay. For DNAL, we found that the 3′-processing reaction was efficient during the early stage of the replication cycle. Moreover, strand-transfer inhibitors (Dolutegravir, Elvitegravir, Raltegravir) affected 3′-processing differently. The comparisons of 2-LTRc accumulation mediated by either strand-transfer inhibitors or catalytic mutation of integrase indicate that 3′-processing efficiency did not influence the total 2-LTRc accumulation although the nature of the LTR-LTR junction was qualitatively affected. Finally, a significant proportion of 1-LTRc was generated concomitantly with reverse transcription, although most of the 1-LTRc were produced in the nucleus.ConclusionsWe describe the fate of viral DNA forms during HIV-1 infection. Our study reveals the interplay between various forms of the viral DNA genome, the distribution of which can be affected by mutations and by inhibitors of HIV-1 viral proteins. In the latter case, the quantification of 3′-processed DNA in infected cells can be informative about the mechanisms of future integrase inhibitors directly in the cell context.
Antimicrobial Agents and Chemotherapy | 2014
Angela Corona; Francesco Saverio Di Leva; Sylvain Thierry; Luca Pescatori; Giuliana Cuzzucoli Crucitti; Frédéric Subra; Olivier Delelis; Francesca Esposito; Giuseppe Rigogliuso; Roberta Costi; Sandro Cosconati; Ettore Novellino; Roberto Di Santo; Enzo Tramontano
ABSTRACT HIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg2+-binding inhibitors of both HIV-1 RNase H and integrase (IN) activities. To investigate the DKA binding site of RNase H and the mechanism of action, six couples of ester and acid DKAs, derived from 6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester (RDS1643), were synthesized and tested on both RNase H and IN functions. Most of the ester derivatives showed selectivity for HIV-1 RNase H versus IN, while acids inhibited both functions. Molecular modeling and site-directed mutagenesis studies on the RNase H domain demonstrated different binding poses for ester and acid DKAs and proved that DKAs interact with residues (R448, N474, Q475, Y501, and R557) involved not in the catalytic motif but in highly conserved portions of the RNase H primer grip motif. The ester derivative RDS1759 selectively inhibited RNase H activity and viral replication in the low micromolar range, making contacts with residues Q475, N474, and Y501. Quantitative PCR studies and fluorescence-activated cell sorting (FACS) analyses showed that RDS1759 selectively inhibited reverse transcription in cell-based assays. Overall, we provide the first demonstration that RNase H inhibition by DKAs is due not only to their chelating properties but also to specific interactions with highly conserved amino acid residues in the RNase H domain, leading to effective targeting of HIV retrotranscription in cells and hence offering important insights for the rational design of RNase H inhibitors.
Retrovirology | 2015
Sylvain Thierry; Soundasse Munir; Eloïse Thierry; Frédéric Subra; Hervé Leh; Alessia Zamborlini; Dyana Saenz; David N. Levy; Paul Lesbats; Ali Saïb; Vincent Parissi; Eric M. Poeschla; Eric Deprez; Olivier Delelis
BackgroundGenomic integration, an obligate step in the HIV-1 replication cycle, is blocked by the integrase inhibitor raltegravir. A consequence is an excess of unintegrated viral DNA genomes, which undergo intramolecular ligation and accumulate as 2-LTR circles. These circularized genomes are also reliably observed in vivo in the absence of antiviral therapy and they persist in non-dividing cells. However, they have long been considered as dead-end products that are not precursors to integration and further viral propagation.ResultsHere, we show that raltegravir action is reversible and that unintegrated viral DNA is integrated in the host cell genome after raltegravir removal leading to HIV-1 replication. Using quantitative PCR approach, we analyzed the consequences of reversing prolonged raltegravir-induced integration blocks. We observed, after RAL removal, a decrease of 2-LTR circles and a transient increase of linear DNA that is subsequently integrated in the host cell genome and fuel new cycles of viral replication.ConclusionsOur data highly suggest that 2-LTR circles can be used as a reserve supply of genomes for proviral integration highlighting their potential role in the overall HIV-1 replication cycle.
Biochimica et Biophysica Acta | 2010
Olivier Delelis; Alessia Zamborlini; Sylvain Thierry; Ali Saïb
Since integration into the host cell genome is an obligatory step for their replication, retro-elements are both potent insertional mutagens and also suitable vectors for gene therapy. Many recent studies reported that the integration process is not random but, on the contrary, higly regulated at the molecular level. Many viral proteins and cellular factors play a key role in the integration step, explaining the reason why different retro-elements display distinct integration profiles. This review describes the recent highlights about integration of retro-elements with particular focus on the mechanisms underlying the specificity of integration target-site selection and the step of chromosomal tethering which preceeds insertion of the provirus.
PLOS ONE | 2013
Gwenola Manic; Aurélie Maurin-Marlin; Fanny Laurent; Ilio Vitale; Sylvain Thierry; Olivier Delelis; Philippe Dessen; Michelle Vincendeau; Christine Leib-Mösch; Uriel Hazan; Jean Francois Mouscadet; Stéphanie Bury-Moné
Ku, a cellular complex required for human cell survival and involved in double strand break DNA repair and multiple other cellular processes, may modulate retroviral multiplication, although the precise mechanism through which it acts is still controversial. Recently, Ku was identified as a possible anti-human immunodeficiency virus type 1 (HIV-1) target in human cells, in two global approaches. Here we investigated the role of Ku on the HIV-1 replication cycle by analyzing the expression level of a panel of non-replicative lentiviral vectors expressing the green fluorescent protein in human colorectal carcinoma HCT 116 cells, stably or transiently depleted of Ku. We found that in this cellular model the depletion of Ku did not affect the efficiency of (pre-)integrative steps but decreased the early HIV-1 expression by acting at the transcriptional level. This negative effect was specific of the HIV-1 promoter, required the obligatory step of viral DNA integration and was reversed by transient depletion of p53. We also provided evidence on a direct binding of Ku to HIV-1 LTR in transduced cells. Ku not only promotes the early transcription from the HIV-1 promoter, but also limits the constitution of viral latency. Moreover, in the presence of a normal level of Ku, HIV-1 expression was gradually lost over time, likely due to the counter-selection of HIV-1-expressing cells. On the contrary, the reactivation of transgene expression from HIV-1 by means of trichostatin A- or tumor necrosis factor α-administration was enhanced under condition of Ku haplodepletion, suggesting a phenomenon of provirus latency. These observations plead in favor of the hypothesis that Ku has an impact on HIV-1 expression and latency at early- and mid-time after integration.
Molecular therapy. Nucleic acids | 2014
Muhammad Qamar Saeed; Noelle Dufour; Cynthia Bartholmae; Urzula Sieranska; Malaika Knopf; Eloïse Thierry; Sylvain Thierry; Olivier Delelis; Nicolas Grandchamp; Héloïse Pilet; Philippe Ravassard; Julie Massonneau; Françoise Pflumio; Christof von Kalle; Franc¸ois Lachapelle; Alexis Pierre Bemelmans; Manfred Schmidt; Ché Serguera
HIV-1 derived vectors are among the most efficient for gene transduction in mammalian tissues. As the parent virus, they carry out vector genome insertion into the host cell chromatin. Consequently, their preferential integration in transcribed genes raises several conceptual and safety issues. To address part of these questions, HIV-derived vectors have been engineered to be nonintegrating. This was mainly achieved by mutating HIV-1 integrase at functional hotspots of the enzyme enabling the development of streamlined nuclear DNA circles functional for transgene expression. Few integrase mutant vectors have been successfully tested so far for gene transfer. They are cleared with time in mitotic cells, but stable within nondividing retina cells or neurons. Here, we compared six HIV vectors carrying different integrases, either wild type or with different mutations (D64V, D167H, Q168A, K186Q+Q214L+Q216L, and RRK262-264AAH) shown to modify integrase enzymatic activity, oligomerization, or interaction with key cellular cofactor of HIV DNA integration as LEDGF/p75 or TNPO3. We show that these mutations differently affect the transduction efficiency as well as rates and patterns of integration of HIV-derived vectors suggesting their different processing in the nucleus. Surprisingly and most interestingly, we report that an integrase carrying the D167H substitution improves vector transduction efficiency and integration in both HEK-293T and primary CD34+ cells.
Chemistry & Biology | 2015
Sylvain Thierry; Mohamed Salah Benleulmi; Ludivine Sinzelle; Eloïse Thierry; Christina Calmels; Stéphane Chaignepain; Pierre Waffo-Téguo; Jean-Michel Mérillon; Brian Budke; Jean-Max Pasquet; Simon Litvak; Angela Ciuffi; Patrick Sung; Philip P. Connell; Ilona Hauber; Joachim Hauber; Marie-Line Andreola; Olivier Delelis; Vincent Parissi
Archive | 2013
Soundasse Munir; Sylvain Thierry; Frédéric Subra; Eric Deprez; Olivier Delelis