Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvaine F. A. Bruggraber is active.

Publication


Featured researches published by Sylvaine F. A. Bruggraber.


PLOS ONE | 2013

Caco-2 Cell Acquisition of Dietary Iron(III) Invokes a Nanoparticulate Endocytic Pathway

Dora I. A. Pereira; Bianca I. Mergler; Nuno Faria; Sylvaine F. A. Bruggraber; Mohamad F. Aslam; Lynsey K. Poots; Laura Prassmayer; Bo Lönnerdal; Andy Brown; Jonathan J. Powell

Dietary non-heme iron contains ferrous [Fe(II)] and ferric [Fe(III)] iron fractions and the latter should hydrolyze, forming Fe(III) oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite-like particles. Synthetic analogues of these (~ 10 nm hydrodynamic diameter) were readily adherent to the cell membrane of differentiated Caco-2 cells and internalization was visualized using transmission electron microscopy. Moreover, Caco-2 exposure to these nanoparticles led to ferritin formation (i.e., iron utilization) by the cells, which, unlike for soluble forms of iron, was reduced (p=0.02) by inhibition of clathrin-mediated endocytosis. Simulated lysosomal digestion indicated that the nanoparticles are readily dissolved under mildly acidic conditions with the lysosomal ligand, citrate. This was confirmed in cell culture as monensin inhibited Caco-2 utilization of iron from this source in a dose dependent fashion (p<0.05) whilet soluble iron was again unaffected. Our findings reveal the possibility of an endocytic pathway for acquisition of dietary Fe(III) by the small intestinal epithelium, which would complement the established DMT-1 pathway for soluble Fe(II).


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

Dora I. A. Pereira; Sylvaine F. A. Bruggraber; Nuno Faria; Lynsey K. Poots; Mani Tagmount; Mohamad F. Aslam; David M. Frazer; Chris D. Vulpe; Gregory J. Anderson; Jonathan J. Powell

Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition.


Nature Nanotechnology | 2015

An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells

Jonathan Joseph Powell; Emma Thomas-McKay; Vinay Thoree; Jack Robertson; Rachel E. Hewitt; Jeremy N. Skepper; Andy Brown; Juan C. Hernández-Garrido; Paul A. Midgley; I. Gomez-Morilla; G.W. Grime; K.J. Kirkby; Neil A. Mabbott; David S. Donaldson; Ifor R. Williams; Daniel Rios; Stephen E. Girardin; Carolin T Haas; Sylvaine F. A. Bruggraber; Jon D. Laman; Yakup Tanriver; Giovanna Lombardi; Robert I. Lechler; Richard Ph Thompson; Laetitia Pele

In humans and other mammals, it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally-fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer’s patches - small areas of the intestine concentrated with particle-scavenging immune cells. In wild type mice, intestinal immune cells containing these naturally-formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1 (PD-L1)’, whereas in NOD1/2 double knock-out mice, which cannot recognize peptidoglycan, PD-L1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and how this helps to shape intestinal immune homeostasis.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity

Jonathan J. Powell; Sylvaine F. A. Bruggraber; Nuno Faria; Lynsey K. Poots; Nicole Hondow; Timothy J. Pennycook; Gladys O. Latunde-Dada; Robert J. Simpson; Andy Brown; Dora I. A. Pereira

The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~ 2.7 Å for the main Bragg peak versus 2.6 Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the Clinical Editor Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation.


Helicobacter | 2004

Selective and effective bactericidal activity of the cobalt (II) cation against Helicobacter pylori.

Sylvaine F. A. Bruggraber; Gary French; Richard P. H. Thompson; Jonathan J. Powell

Background.  Although the anti‐Helicobacter pylori activity of bismuth is well established, the therapeutic potential of other metal ions against the organism is not known.


The FASEB Journal | 2014

Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

Mohamad F. Aslam; David M. Frazer; Nuno Faria; Sylvaine F. A. Bruggraber; Sarah J. Wilkins; Cornel S. G. Mirciov; Jonathan J. Powell; Greg J. Anderson; Dora I. A. Pereira

The ferritin core is composed of fine nanoparticulate Fe3+ oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe3+ polyoxohydroxide (nanoFe3+). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run‐in on an Fe‐deficient diet, mice with intestinal‐specific disruption of the Fpn‐1 gene (Fpn‐KO), or littermate wild‐type (WT) controls, were supplemented with Fe2+ sulfate (FeSO4), nanoFe3+, or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe3+ was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe3+ are equally bioavailable in WT mice, and at wk 8 the mean ± sem hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe3+ group. Oral iron failed to be utilized by Fpn‐KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe3+ is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin‐dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.—Aslam, M. F., Frazer, D. M., Faria, N., Bruggraber, S. F. A., Wilkins, S. J., Mirciov, C., Powell, J. J., Anderson, G. J., Pereira, D. I. A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. FASEB J. 28, 3671–3678 (2014). www.fasebj.org


Archives of Dermatological Research | 2013

Filtration of dermal fibroblast-conditioned culture media is required for the reliable quantitation of cleaved carboxy-terminal peptide of collagen type I (CICP) by ELISA.

Katarzyna S. Kopanska; Jonathan J. Powell; Ravin Jugdaohsingh; Sylvaine F. A. Bruggraber

Cleavage of the collagen type I carboxy-terminal peptide (CICP) from the procollagen molecule is an essential step in collagen biosynthesis. The commercial CICP ELISA (Quidel Corporation, USA), developed for quantifying CICP in serum in clinical monitoring, is often also applied to cellular studies as a measure of collagen synthesis. However, unlike in serum samples, which contain only cleaved CICP, cell-conditioned culture media also contains “uncleaved CICP”, namely procollagen, and there is no specific guidance on how to interpret the ELISA data obtained with such samples. Here we attempted to reliably quantify cleaved CICP in human dermal fibroblast-conditioned cell culture media using the CICP ELISA. CICP concentration was determined in the parent and filtered samples of culture media of dermal fibroblasts (CCD-25SK). Gel-separated samples were also subjected to protein staining or analyzed by Western blot using the anti-CICP antibodies supplied in the ELISA kit. The derived concentrations of CICP in the filtered aliquots and the parent unfiltered samples increased over time. The increase in CICP in the unfiltered samples was not proportional to the increase seen in the filtered aliquot. CICP ELISA antibodies recognized both the cleaved CICP trimer and procollagen molecule. The data presented show that (a) the commercial CICP ELISA recognizes both procollagen and cleaved CICP in cell-conditioned culture media and thus attention should be paid in interpreting data from cell culture studies using this ELISA and (b) the filtration method described herein can be used to exclusively and reliably monitor cleaved CICP.


PLOS ONE | 2017

Characterisation of zinc delivery from a nipple shield delivery system using a breastfeeding simulation apparatus

Rebekah L. Scheuerle; Sylvaine F. A. Bruggraber; Stephen E. Gerrard; Richard Andrew Kendall; Catherine Tuleu; Nigel K.H. Slater

Zinc delivery from a nipple shield delivery system (NSDS), a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32–51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch’s correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia.


International Journal of Pharmaceutics | 2018

Zinc delivery from non-woven fibres within a therapeutic nipple shield.

Theresa Maier; Rebekah L. Scheuerle; Daniel Markl; Sylvaine F. A. Bruggraber; Axel Zeitler; Ljiljana Fruk; Nigel K.H. Slater

A Therapeutic Nipple Shield (TNS) was previously developed to respond to the global need for new infant therapeutic delivery technologies. However, the release efficiency for the same Active Pharmaceutical Ingredient (API) from different therapeutic matrices within the TNS formulation has not yet been investigated. To address this, in-vitro release of elemental zinc into human milk from two types of Texel non-woven fibre mats of varying thickness and different gram per square meter values, placed inside the TNS was explored and compared to the release from zinc-containing rapidly disintegrating tablets. In-vitro delivery was performed by means of a breastfeeding simulation apparatus, with human milk flow rates and suction pressure adjusted to physiologically relevant values, and release was quantified using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). It was found that a total recovery of 62-64 % elemental zinc was obtained after the human milk had passed through the fibre insert, amounting to a 20-48% increase compared to previous zinc delivery studies using rapidly disintegrating tablets within the TNS. This indicates that non-woven Texel fibre mats were identified as the superior dosage form for oral zinc delivery into human milk using a TNS.


The American Journal of Clinical Nutrition | 2017

A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope

Salma F Ahmad Fuzi; Dagmar Koller; Sylvaine F. A. Bruggraber; Dora I. A. Pereira; Jack R. Dainty; Sohail Mushtaq

Background: Tea has been shown to be a potent inhibitor of nonheme iron absorption, but it remains unclear whether the timing of tea consumption relative to a meal influences iron bioavailability.Objective: The aim of the study was to investigate the effect of a 1-h time interval of tea consumption on nonheme iron absorption in an iron-containing meal in a cohort of iron-replete, nonanemic female subjects with the use of a stable isotope (57Fe).Design: Twelve women (mean ± SD age: 24.8 ± 6.9 y) were administered a standardized porridge meal extrinsically labeled with 4 mg 57Fe as FeSO4 on 3 separate occasions, with a 14-d time interval between each test meal (TM). The TM was administered with water (TM-1), with tea administered simultaneously (TM-2), and with tea administered 1 h postmeal (TM-3). Fasted venous blood samples were collected for iron isotopic analysis and measurement of iron status biomarkers. Fractional iron absorption was estimated by the erythrocyte iron incorporation method.Results: Iron absorption was 5.7% ± 8.5% (TM-1), 3.6% ± 4.2% (TM-2), and 5.7% ± 5.4% (TM-3). Mean fractional iron absorption was found to be significantly higher (2.2%) when tea was administered 1 h postmeal (TM-3) than when tea was administered simultaneously with the meal (TM-2) (P = 0.046). An ∼50% reduction in the inhibitory effect of tea (relative to water) was observed, from 37.2% (TM-2) to 18.1% (TM-3).Conclusions: This study shows that tea consumed simultaneously with an iron-containing porridge meal leads to decreased nonheme iron absorption and that a 1-h time interval between a meal and tea consumption attenuates the inhibitory effect, resulting in increased nonheme iron absorption. These findings are not only important in relation to the management of iron deficiency but should also inform dietary advice, especially that given to those at risk of deficiency. This trial was registered at clinicaltrials.gov as NCT02365103.

Collaboration


Dive into the Sylvaine F. A. Bruggraber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dora I. A. Pereira

MRC Human Nutrition Research

View shared research outputs
Top Co-Authors

Avatar

Nuno Faria

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynsey K. Poots

MRC Human Nutrition Research

View shared research outputs
Top Co-Authors

Avatar

Ravin Jugdaohsingh

MRC Human Nutrition Research

View shared research outputs
Top Co-Authors

Avatar

David M. Frazer

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ashley Olson

MRC Human Nutrition Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge