Sylvane Desrivières
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvane Desrivières.
Journal of Biological Chemistry | 1998
Said Hashemolhosseini; Yoshikuni Nagamine; Simon J. Morley; Sylvane Desrivières; Luka Mercep; Stefano Ferrari
The immunosuppressant rapamycin has been shown previously to inhibit the G1/S transition in several cell types by prolonging the G1 phase of the cell cycle. This process appears to be controlled, in part, by the rapamycin-sensitive FK506-binding protein-rapamycin-associated protein-p70 S6 kinase (p70S6k) pathway and the cyclin-dependent kinases (Cdk). We now show that in serum-stimulated NIH 3T3 cells, rapamycin treatment delays the accumulation of cyclin D1 mRNA during progression through G1. Rapamycin also appears to affect stability of the transcript. The combined transcriptional and post-transcriptional effects of the drug ultimately result in decreased levels of cyclin D1 protein. Moreover, degradation of newly synthesized cyclin D1 protein is accelerated by rapamycin, a process prevented by inclusion of the proteasome inhibitor, N-acetyl-Leu-Leu-norleucinal. The overall effect of rapamycin on cyclin D1 leads, in turn, to impaired formation of active complexes with Cdk4, a process which triggers retargeting of the p27Kip1 inhibitor to cyclin E/Cdk2. In view of this novel experimental evidence, we discuss a possible mechanism for the rapamycin-induced cell cycle arrest at the G1/S transition.
American Journal of Psychiatry | 2011
Li Dong; Ainhoa Bilbao; Manfred Laucht; Richard Henriksson; Tatjana Yakovleva; Monika Ridinger; Sylvane Desrivières; Toni-Kim Clarke; Anbarasu Lourdusamy; Michael N. Smolka; Sven Cichon; Dorothea Blomeyer; Stéphanie Perreau-Lenz; Stephanie H. Witt; Fernando Leonardi-Essmann; Norbert Wodarz; Peter Zill; Michael Soyka; Urs Albrecht; Marcella Rietschel; Mark Lathrop; Georgy Bakalkin; Rainer Spanagel; Gunter Schumann
OBJECTIVE Circadian and stress-response systems mediate environmental changes that affect alcohol drinking. Psychosocial stress is an environmental risk factor for alcohol abuse. Circadian rhythm gene period 1 (Per1) is targeted by stress hormones and is transcriptionally activated in corticotropin releasing factor-expressing cells. The authors hypothesized that Per1 is involved in integrating stress response and circadian rhythmicity and explored its relevance to alcohol drinking. METHOD In mice, the effects of stress on ethanol intake in mPer1-mutant and wild-type mice were assessed. In humans, single nucleotide polymorphisms (SNPs) in hPer1 were tested for association with alcohol drinking behavior in 273 adolescents and an adult case-control sample of 1,006 alcohol-dependent patients and 1,178 comparison subjects. In vitro experiments were conducted to measure genotype-specific expression and transcription factor binding to hPer1. RESULTS The mPer1-mutant mice showed enhanced alcohol consumption in response to social defeat stress relative to their wild-type littermates. An association with the frequency of heavy drinking in adolescents with the hPer1 promoter SNP rs3027172 and with psychosocial adversity was found. There was significant interaction between the rs3027172 genotype and psychosocial adversity on this drinking measure. In a confirmatory analysis, association of hPer1 rs3027172 with alcohol dependence was shown. Cortisol-induced transcriptional activation of hPer1 was reduced in human B-lymphoblastoid cells carrying the risk genotype of rs3027172. Binding affinity of the transcription factor Snail1 to the risk allele of the hPer1 SNP rs3027172 was also reduced. CONCLUSIONS The findings indicate that the hPer1 gene regulates alcohol drinking behavior during stressful conditions and provide evidence for underlying neurobiological mechanisms.
Journal of Mammary Gland Biology and Neoplasia | 2006
Sylvane Desrivières; Christian Kunz; Itamar Barash; Vida Vafaizadeh; Corina Borghouts; Bernd Groner
Signal transducers and activators of transcription (STATs) comprise a unique family of transcription factors, which transmit the interactions of cytokines, hormones and growth factors with their cell surface receptors into transcriptional programs. The mechanism of STAT activation has been well-established and comprises tyrosine phosphorylation, dimerization, nuclear translocation, binding to specific DNA response elements, recruitment of co-activators or co-repressors and transcriptional induction or repression of target genes. Gene deletion, microarrays, proteomics and chromatin immunoprecipitation experiments have revealed target genes with a broad range of functions regulated by STAT3 and STAT5. In the mammary gland, STAT5-induced genes contribute mainly to the prolactin dependent lobulo-alveolar development, whereas STAT3 induced genes control apoptosis during involution. Crucial effects have also been observed in other tissues. The germ line deletion of STAT3 or STAT5 causes early embryonal or perinatal lethality in mice. STAT5 is also required for proliferation of T- and B-cells and hematopoietic stem cell self-renewal. Deregulated STAT activity is often found associated with tumorigenesis and activated STATs seem to be limiting components in tumor cells. This review summarizes the functions of STAT3 and STAT5 in different cell types and the strategies that are used to counteract their action in tumor cells.
Stem Cells | 2010
Vida Vafaizadeh; Petra Klemmt; Christian Brendel; Kristoffer Weber; Carmen Doebele; Kara L. Britt; Manuel Grez; Boris Fehse; Sylvane Desrivières; Bernd Groner
The mammary gland represents a unique model system to study gene functions in adult stem cells. Mammary stem cells (MaSCs) can regenerate a functional epithelium on transplantation into cleared fat pads. We studied the consequences of distinct genetic modifications of MaSCs on their repopulation and differentiation ability. The reconstitution of ductal trees was used as a stem cell selection procedure and the nearly quantitative lentiviral infection efficiency of the primary mammary epithelial cells (MECs) rendered the enrichment of MaSCs before their transplantation unnecessary. The repopulation frequency of transduced MaSCs was nearly 100% in immunodeficient recipients and the resulting transgenic ducts homogeneously expressed the virally encoded fluorescent marker proteins. Transplantation of a mixture of MECs, expressing different fluorescent proteins, resulted in a distinct pattern of ductal outgrowths originating from a small number of individually transduced MaSCs. We used genetically modified MECs to define multiple functions of Stat5 during mammary gland development and differentiation. Stat5‐downregulation in MaSCs did not affect primary ductal outgrowth, but impaired side branching and the emergence of mature alveolar cells from luminal progenitors during pregnancy. Conversely, the expression of a constitutively active variant of Stat5 (cS5‐F) caused epithelial hyperproliferation, thickening of the ducts and precocious, functional alveoli formation in virgin mice. Expression of cS5‐F also prevented involution and caused the formation of estrogen and progesterone receptor positive (ER+PR+) adenocarcinomas. The tumors expressed activated Stat5 and Stat3 and contained a small fraction of CD44+ cells, possibly indicative of cancer stem cells. STEM CELLS 2010;28:928–938
Molecular & Cellular Proteomics | 2003
Sylvane Desrivières; Thorsten Prinz; Nahomi Castro‐Palomino Laria; Markus Meyer; Gitte Boehm; Ute Bauer; Jürgen Schäfer; Thomas Neumann; Carrie S. Shemanko; Bernd Groner
Proliferation and differentiation of mammary epithelial cells are governed by hormonal stimuli, cell-cell, and cell-matrix interactions. Terminal differentiation of mammary epithelial cells depends upon the action of the lactogenic hormones, insulin, glucocorticoids, and prolactin that enable them to synthesize and secrete milk proteins. These differentiated cells are polarized and carry out vectorial transport of milk constituents across the apical plasma membrane. To gain additional insights into the mechanisms governing differentiation of mammary epithelial cells, we identified proteins whose expression distinguishes proliferating from differentiated mammary epithelial cells. For this purpose we made use of the HC11 mammary epithelial line, which is capable of differentiation in response to lactogenic hormones. Using two-dimensional gel electrophoresis and mass spectrometry, we found about 60 proteins whose expression levels changed in between these two differentiation states. Bioinformatic analysis revealed differential expression of cytoskeletal components, molecular chaperones and regulators of protein folding and stability, calcium-binding proteins, and components of RNA-processing pathways. The actin cytoskeleton is asymmetrically distributed in differentiated epithelial cells, and the identification of proteins involved in mRNA binding and localization suggests that asymmetry might in part be achieved by controlling cellular localization of mRNAs. The proteins identified provide insights into the differentiation of mammary epithelial cells and the regulation of this process.
Proceedings of the National Academy of Sciences of the United States of America | 2012
David Stacey; Ainhoa Bilbao; Matthieu Maroteaux; Tianye Jia; Alanna C. Easton; Sophie Longueville; Charlotte Nymberg; Tobias Banaschewski; Gareth J. Barker; Christian Büchel; Fabiana Carvalho; Patricia J. Conrod; Sylvane Desrivières; Mira Fauth-Bühler; Alberto Fernández-Medarde; Herta Flor; Jürgen Gallinat; Hugh Garavan; Arun L.W. Bokde; Andreas Heinz; Bernd Ittermann; Mark Lathrop; Claire Lawrence; Eva Loth; Anbarasu Lourdusamy; Karl Mann; Jean-Luc Martinot; Frauke Nees; Miklós Palkovits; Tomáš Paus
The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca2+-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2−/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2−/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the IA potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Claire I. Dixon; Hannah Morris; Gerome Breen; Sylvane Desrivières; Sarah Jugurnauth; Rebecca C. Steiner; Homero Vallada; Camila Guindalini; Ronaldo Laranjeira; Guilherme Peres Messas; Thomas W. Rosahl; John R. Atack; Dianne R. Peden; Delia Belelli; Jeremy J. Lambert; Sarah L. King; Gunter Schumann; David N. Stephens
Because GABAA receptors containing α2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with α2 gene deletion showed reduced synaptic GABAA receptor-mediated responses. Behaviorally, the deletion abolished cocaine’s ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of α2-GABAA receptors (α2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In α2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of α2−GABAA receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.
NeuroImage | 2017
Paul M. Thompson; Ole A. Andreassen; Alejandro Arias-Vasquez; Carrie E. Bearden; Premika S.W. Boedhoe; Rachel M. Brouwer; Randy L. Buckner; Jan K. Buitelaar; Kazima Bulayeva; Dara M. Cannon; Ronald A. Cohen; Patricia J. Conrod; Anders M. Dale; Ian J. Deary; Emily L. Dennis; Marcel A. de Reus; Sylvane Desrivières; Danai Dima; Gary Donohoe; Simon E. Fisher; Jean-Paul Fouche; Clyde Francks; Sophia Frangou; Barbara Franke; Habib Ganjgahi; Hugh Garavan; David C. Glahn; Hans Joergen Grabe; Tulio Guadalupe; Boris A. Gutman
In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) – a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date – of schizophrenia and major depression – ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMAs genomic screens – now numbering over 30,000 MRI scans – have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants – and genetic variants in general – may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures – from tens of thousands of people – that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMAs efforts so far.
Biochemical Journal | 2002
Sylvane Desrivières; Frank T. Cooke; Helena Morales-Johansson; Peter J. Parker; Michael N. Hall
Phosphoinositides regulate a wide range of cellular processes, including proliferation, survival, cytoskeleton remodelling and membrane trafficking, yet the mechanisms controlling the kinases, phosphatases and lipases that modulate phosphoinositide levels are poorly understood. In the present study, we describe a mechanism controlling MSS4, the sole phosphatidylinositol (4)-phosphate 5-kinase in Saccharomyces cerevisiae. Mutations in MSS4 and CMD1, encoding the small Ca(2+)-binding protein calmodulin, confer similar phenotypes, including loss of viability and defects in endocytosis and in organization of the actin cytoskeleton. Overexpression of MSS4 suppresses the growth and actin defects of cmd1-226, a temperature-sensitive calmodulin mutant which is defective in the organization of the actin cytoskeleton. Finally, the cmd1-226 mutant exhibits reduced levels of phosphatidylinositol (4,5)-bisphosphate. These findings suggest that calmodulin positively controls MSS4 activity and thereby the actin cytoskeleton.
PLOS ONE | 2013
Dorothea Blomeyer; Arlette F. Buchmann; Jesús Lascorz; Ulrich S. Zimmermann; Guenter Esser; Sylvane Desrivières; Martin H. Schmidt; Tobias Banaschewski; Gunter Schumann; Manfred Laucht
Background Clock genes govern circadian rhythms and shape the effect of alcohol use on the physiological system. Exposure to severe negative life events is related to both heavy drinking and disturbed circadian rhythmicity. The aim of this study was 1) to extend previous findings suggesting an association of a haplotype tagging single nucleotide polymorphism of PER2 gene with drinking patterns, and 2) to examine a possible role for an interaction of this gene with life stress in hazardous drinking. Methods Data were collected as part of an epidemiological cohort study on the outcome of early risk factors followed since birth. At age 19 years, 268 young adults (126 males, 142 females) were genotyped for PER2 rs56013859 and were administered a 45-day alcohol timeline follow-back interview and the Alcohol Use Disorders Identification Test (AUDIT). Life stress was assessed as the number of severe negative life events during the past four years reported in a questionnaire and validated by interview. Results Individuals with the minor G allele of rs56013859 were found to be less engaged in alcohol use, drinking at only 72% of the days compared to homozygotes for the major A allele. Moreover, among regular drinkers, a gene x environment interaction emerged (p = .020). While no effects of genotype appeared under conditions of low stress, carriers of the G allele exhibited less hazardous drinking than those homozygous for the A allele when exposed to high stress. Conclusions These findings may suggest a role of the circadian rhythm gene PER2 in both the drinking patterns of young adults and in moderating the impact of severe life stress on hazardous drinking in experienced alcohol users. However, in light of the likely burden of multiple tests, the nature of the measures used and the nominal evidence of interaction, replication is needed before drawing firm conclusions.