Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvester Tan is active.

Publication


Featured researches published by Sylvester Tan.


Nature | 2014

Rate of tree carbon accumulation increases continuously with tree size

Nathan L. Stephenson; Adrian J. Das; Richard Condit; Sabrina E. Russo; Patrick J. Baker; Noelle G. Beckman; David A. Coomes; Emily R. Lines; William K. Morris; Nadja Rüger; Eric A. Álvarez; C. Blundo; Sarayudh Bunyavejchewin; G. Chuyong; Stuart J. Davies; Alvaro Duque; Corneille E. N. Ewango; Olivier Flores; Jerry F. Franklin; H. R. Grau; Zhanqing Hao; Mark E. Harmon; Stephen P. Hubbell; David Kenfack; Yiching Lin; Jean-Remy Makana; A. Malizia; Lucio R. Malizia; R. J. Pabst; Nantachai Pongpattananurak

Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.


Science | 2006

The Importance of Demographic Niches to Tree Diversity

Richard Condit; Peter S. Ashton; Sarayudh Bunyavejchewin; H. S. Dattaraja; Stuart J. Davies; Shameema Esufali; Corneille E. N. Ewango; Robin B. Foster; I. A. U. N. Gunatilleke; C. V. S. Gunatilleke; Pamela Hall; Kyle E. Harms; Terese B. Hart; Consuelo Hernández; Stephen P. Hubbell; Akira Itoh; Somboon Kiratiprayoon; James V. LaFrankie; Suzanne Loo de Lao; Jean-Remy Makana; Md. Nur Supardi Noor; Abdul Rahman Kassim; Sabrina E. Russo; Raman Sukumar; Cristián Samper; Hebbalalu S. Suresh; Sylvester Tan; Sean C. Thomas; Renato Valencia; Martha Isabel Vallejo

Most ecological hypotheses about species coexistence hinge on species differences, but quantifying trait differences across species in diverse communities is often unfeasible. We examined the variation of demographic traits using a global tropical forest data set covering 4500 species in 10 large-scale tree inventories. With a hierarchical Bayesian approach, we quantified the distribution of mortality and growth rates of all tree species at each site. This allowed us to test the prediction that demographic differences facilitate species richness, as suggested by the theory that a tradeoff between high growth and high survival allows species to coexist. Contrary to the prediction, the most diverse forests had the least demographic variation. Although demographic differences may foster coexistence, they do not explain any of the 16-fold variation in tree species richness observed across the tropics.


PLOS Biology | 2008

Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities

Jérôme Chave; Richard Condit; Helene C. Muller-Landau; Sean C. Thomas; Peter S. Ashton; Sarayudh Bunyavejchewin; Leonardo Co; H. S. Dattaraja; Stuart J. Davies; Shameema Esufali; Corneille E. N. Ewango; Kenneth J. Feeley; Robin B. Foster; Nimal Gunatilleke; Savitri Gunatilleke; Pamela Hall; Terese B. Hart; Consuelo Hernández; Stephen P. Hubbell; Akira Itoh; Somboon Kiratiprayoon; James V. LaFrankie; Suzanne Loo de Lao; Jean-Remy Makana; Md. Nur Supardi Noor; Abdul Rahman Kassim; Cristián Samper; Raman Sukumar; Hebbalalu S. Suresh; Sylvester Tan

In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.


New Phytologist | 2010

Potential link between plant and fungal distributions in a dipterocarp rainforest: Community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone

Kabir G. Peay; Peter G. Kennedy; Stuart J. Davies; Sylvester Tan; Thomas D. Bruns

*Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.


Ecology Letters | 2013

Consequences of defaunation for a tropical tree community.

Rhett D. Harrison; Sylvester Tan; Joshua B. Plotkin; Ferry Slik; Matteo Detto; Tania Brenes; Akira Itoh; Stuart J. Davies

Hunting affects a considerably greater area of the tropical forest biome than deforestation and logging combined. Often even large remote protected areas are depleted of a substantial proportion of their vertebrate fauna. However, understanding of the long-term ecological consequences of defaunation in tropical forests remains poor. Using tree census data from a large-scale plot monitored over a 15-year period since the approximate onset of intense hunting, we provide a comprehensive assessment of the immediate consequences of defaunation for a tropical tree community. Our data strongly suggest that over-hunting has engendered pervasive changes in tree population spatial structure and dynamics, leading to a consistent decline in local tree diversity over time. However, we do not find any support for suggestions that over-hunting reduces above-ground biomass or biomass accumulation rate in this forest. To maintain critical ecosystem processes in tropical forests increased efforts are required to protect and restore wildlife populations.


Journal of Ecology | 2013

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan A. Chisholm; Helene C. Muller-Landau; Kassim Abdul Rahman; Daniel P. Bebber; Yue Bin; Stephanie A. Bohlman; Norman A. Bourg; Joshua S. Brinks; Sarayudh Bunyavejchewin; Nathalie Butt; Hong-Lin Cao; Min Cao; Dairon Cárdenas; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; H. S. Dattaraja; Stuart J. Davies; Alvaro Duque; Christine Fletcher; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; Rhett D. Harrison; Robert W. Howe; Chang-Fu Hsieh; Stephen P. Hubbell; Akira Itoh; David Kenfack

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity.


Oecologia | 2004

Habitat heterogeneity and niche structure of trees in two tropical rain forests

Matthew D. Potts; Stuart J. Davies; William H. Bossert; Sylvester Tan; M. N. Nur Supardi

Dispersal-assembly theories of species coexistence posit that environmental factors play no role in explaining community diversity and structure. Dispersal-assembly theories shed light on some aspects of community structure such as species-area and species-abundance relationships. However, species’ environmental associations also affect these measures of community structure. Measurements of species’ niche breadth and overlap address this influence. Using a new continuous measure of niche and a dispersal-assembly null model that maintains species’ niche breadth and aggregation, we tested two hypotheses assessing the effects of habitat heterogeneity on the ability of dispersal-assembly theories to explain community niche structure. We found that in both homogenous and heterogeneous environments dispersal-assembly theories cannot fully explain observed niche structure. The performance of the dispersal-assembly null models was particularly poor in heterogeneous environments. These results indicate that non-dispersal based mechanisms are in part responsible for observed community structure and measures of community structure which include species’ environmental associations should be used to test theories of species diversity.


Ecology Letters | 2014

Temporal variability of forest communities: empirical estimates of population change in 4000 tree species

Ryan A. Chisholm; Richard Condit; K. Abd Rahman; Patrick J. Baker; Sarayudh Bunyavejchewin; Yu-Yun Chen; George B. Chuyong; H. S. Dattaraja; Stuart J. Davies; Corneille E. N. Ewango; C.V.S. Gunatilleke; I. A. U. Nimal Gunatilleke; Stephen P. Hubbell; David Kenfack; Somboon Kiratiprayoon; Yiching Lin; Jean-Remy Makana; Nantachai Pongpattananurak; Sandeep Pulla; Ruwan Punchi-Manage; Raman Sukumar; Sheng-Hsin Su; I-Fang Sun; Hebbalalu S. Suresh; Sylvester Tan; Duncan W. Thomas; Sandra L. Yap

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28 years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.


Journal of Ecology | 2014

Tropical forest wood production: a cross-continental comparison

Lindsay Banin; Simon L. Lewis; Gabriela Lopez-Gonzalez; Timothy R. Baker; Carlos A. Quesada; Kuo-Jung Chao; David F. R. P. Burslem; Reuben Nilus; Kamariah Abu Salim; Helen C. Keeling; Sylvester Tan; Stuart J. Davies; Abel Monteagudo Mendoza; Rodolfo Vasquez; Jon Lloyd; David A. Neill; Nigel C. A. Pitman; Oliver L. Phillips

Summary: Tropical forest above-ground wood production (AGWP) varies substantially along environmental gradients. Some evidence suggests that AGWP may vary between regions and specifically that Asian forests have particularly high AGWP. However, comparisons across biogeographic regions using standardized methods are lacking, limiting our assessment of pan-tropical variation in AGWP and potential causes. We sampled AGWP in NW Amazon (17 long-term forest plots) and N Borneo (11 plots), both with abundant year-round precipitation. Within each region, forests growing on a broad range of edaphic conditions were sampled using standardized soil and forest measurement techniques. Plot-level AGWP was 49% greater in Borneo than in Amazonia (9.73 ± 0.56 vs. 6.53 ± 0.34 Mg dry mass ha -1 a -1 , respectively; regional mean ± 1 SE). AGWP was positively associated with soil fertility (PCA axes, sum of bases and total P). After controlling for the edaphic environment, AGWP remained significantly higher in Bornean plots. Differences in AGWP were largely attributable to differing height-diameter allometry in the two regions and the abundance of large trees in Borneo. This may be explained, in part, by the greater solar radiation in Borneo compared with NW Amazonia. Trees belonging to the dominant SE Asian family, Dipterocarpaceae, gained woody biomass faster than otherwise equivalent, neighbouring non-dipterocarps, implying that the exceptional production of Bornean forests may be driven by floristic elements. This dominant SE Asian family may partition biomass differently or be more efficient at harvesting resources and in converting them to woody biomass. Synthesis. N Bornean forests have much greater AGWP rates than those in NW Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history. North Bornean forests have much greater AGWP rates than those in north-western Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why these Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity

Calum Brown; David F. R. P. Burslem; Janine Illian; L. Bao; Warren Y. Brockelman; Min Cao; L. W. Chang; H. S. Dattaraja; Stuart J. Davies; C.V.S. Gunatilleke; I. A. U. N. Gunatilleke; JianXiong Huang; Abd Rahman Kassim; J. V. LaFrankie; Jane B. Lian; Luxiang Lin; Keping Ma; Xiangcheng Mi; Anuttara Nathalang; S. Noor; Perry S. Ong; Raman Sukumar; Sheng-Hsin Su; I-Fang Sun; Hebbalalu S. Suresh; Sylvester Tan; Jill Thompson; María Uriarte; Renato Valencia; Sandra L. Yap

Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.

Collaboration


Dive into the Sylvester Tan's collaboration.

Top Co-Authors

Avatar

Stuart J. Davies

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabrina E. Russo

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Richard Condit

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge