Sylvestre Marillonnet
John Innes Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvestre Marillonnet.
PLOS ONE | 2008
Carola Engler; Romy Kandzia; Sylvestre Marillonnet
Current cloning technologies based on site-specific recombination are efficient, simple to use, and flexible, but have the drawback of leaving recombination site sequences in the final construct, adding an extra 8 to 13 amino acids to the expressed protein. We have devised a simple and rapid subcloning strategy to transfer any DNA fragment of interest from an entry clone into an expression vector, without this shortcoming. The strategy is based on the use of type IIs restriction enzymes, which cut outside of their recognition sequence. With proper design of the cleavage sites, two fragments cut by type IIs restriction enzymes can be ligated into a product lacking the original restriction site. Based on this property, a cloning strategy called ‘Golden Gate’ cloning was devised that allows to obtain in one tube and one step close to one hundred percent correct recombinant plasmids after just a 5 minute restriction-ligation. This method is therefore as efficient as currently used recombination-based cloning technologies but yields recombinant plasmids that do not contain unwanted sequences in the final construct, thus providing precision for this fundamental process of genetic manipulation.
Nature Cell Biology | 2008
Kamal Swarup; Eva Benková; Ranjan Swarup; Ilda Casimiro; Benjamin Péret; Yaodong Yang; Geraint Parry; Erik Nielsen; Ive De Smet; Steffen Vanneste; Mitch P. Levesque; David John Carrier; Nicholas James; Vanessa Calvo; Karin Ljung; Eric M. Kramer; Rebecca Roberts; Neil S. Graham; Sylvestre Marillonnet; Kanu Patel; Jonathan D. G. Jones; Christopher G. Taylor; Daniel P. Schachtman; Sean T. May; Göran Sandberg; Philip N. Benfey; Jiri Friml; Ian D. Kerr; Tom Beeckman; Laurent Laplaze
Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.
PLOS ONE | 2009
Carola Engler; Ramona Gruetzner; Romy Kandzia; Sylvestre Marillonnet
We have developed a protocol to assemble in one step and one tube at least nine separate DNA fragments together into an acceptor vector, with 90% of recombinant clones obtained containing the desired construct. This protocol is based on the use of type IIs restriction enzymes and is performed by simply subjecting a mix of 10 undigested input plasmids (nine insert plasmids and the acceptor vector) to a restriction-ligation and transforming the resulting mix in competent cells. The efficiency of this protocol allows generating libraries of recombinant genes by combining in one reaction several fragment sets prepared from different parental templates. As an example, we have applied this strategy for shuffling of trypsinogen from three parental templates (bovine cationic trypsinogen, bovine anionic trypsinogen and human cationic trypsinogen) each divided in 9 separate modules. We show that one round of shuffling using the 27 trypsinogen entry plasmids can easily produce the 19,683 different possible combinations in one single restriction-ligation and that expression screening of a subset of the library allows identification of variants that can lead to higher expression levels of trypsin activity. This protocol, that we call ‘Golden Gate shuffling’, is robust, simple and efficient, can be performed with templates that have no homology, and can be combined with other shuffling protocols in order to introduce any variation in any part of a given gene.
Nature Biotechnology | 2005
Sylvestre Marillonnet; Carola Thoeringer; Romy Kandzia; Victor Klimyuk; Yuri Gleba
Plant biotechnology relies on two approaches for delivery and expression of heterologous genes in plants: stable genetic transformation and transient expression using viral vectors. Although much faster, the transient route is limited by low infectivity of viral vectors carrying average-sized or large genes. We have developed constructs for the efficient delivery of RNA viral vectors as DNA precursors and show here that Agrobacterium–mediated delivery of these constructs results in gene amplification in all mature leaves of a plant simultaneously (systemic transfection). This process, called magnifection, can be performed on a large scale and with different plant species. This technology combines advantages of three biological systems (the transfection efficiency of A. tumefaciens, the high expression yield obtained with viral vectors, and the post-translational capabilities of a plant), does not require genetic modification of plants and is faster than other existing methods.
The Plant Cell | 1999
Alain Tissier; Sylvestre Marillonnet; Victor Klimyuk; Kanu Patel; Miguel Angel Torres; George Murphy; Jonathan D. G. Jones
A new system for insertional mutagenesis based on the maize Enhancer/Suppressor-mutator (En/Spm) element was introduced into Arabidopsis. A single T-DNA construct carried a nonautonomous defective Spm (dSpm) element with a phosphinothricin herbicide resistance (BAR) gene, a transposase expression cassette, and a counterselectable gene. This construct was used to select for stable dSpm transpositions. Treatments for both positive (BAR) and negative selection markers were applicable to soil-grown plants, allowing the recovery of new transpositions on a large scale. To date, a total of 48,000 lines in pools of 50 have been recovered, of which ∼80% result from independent insertion events. DNA extracted from these pools was used in reverse genetic screens, either by polymerase chain reaction (PCR) using primers from the transposon and the targeted gene or by the display of insertions whereby inverse PCR products of insertions from the DNA pools are spotted on a membrane that is then hybridized with the probe of interest. By sequencing PCR-amplified fragments adjacent to insertion sites, we established a sequenced insertion-site database of 1200 sequences. This database permitted a comparison of the chromosomal distribution of transpositions from various T-DNA locations.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Anatoli Giritch; Sylvestre Marillonnet; Carola Engler; Gerben van Eldik; Johan Botterman; Victor Klimyuk; Yuri Gleba
Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events.
PLOS ONE | 2011
Ernst Weber; Carola Engler; Ramona Gruetzner; Stefan Werner; Sylvestre Marillonnet
Recent progress in the field of synthetic biology has led to the creation of cells containing synthetic genomes. Although these first synthetic organisms contained copies of natural genomes, future work will be directed toward engineering of organisms with modified genomes and novel phenotypes. Much work, however, remains to be done to be able to routinely engineer novel biological functions. As a tool that will be useful for such purpose, we have recently developed a modular cloning system (MoClo) that allows high throughput assembly of multiple genetic elements. We present here new features of this cloning system that allow to increase the speed of assembly of multigene constructs. As an example, 68 DNA fragments encoding basic genetic elements were assembled using three one-pot cloning steps, resulting in a 50 kb construct containing 17 eukaryotic transcription units. This cloning system should be useful for generating the multiple construct variants that will be required for developing gene networks encoding novel functions, and fine-tuning the expression levels of the various genes involved.The field of synthetic biology promises to revolutionize biotechnology through the design of organisms with novel phenotypes useful for medicine, agriculture and industry. However, a limiting factor is the ability of current methods to assemble complex DNA molecules encoding multiple genetic elements in various predefined arrangements. We present here a hierarchical modular cloning system that allows the creation at will and with high efficiency of any eukaryotic multigene construct, starting from libraries of defined and validated basic modules containing regulatory and coding sequences. This system is based on the ability of type IIS restriction enzymes to assemble multiple DNA fragments in a defined linear order. We constructed a 33 kb DNA molecule containing 11 transcription units made from 44 individual basic modules in only three successive cloning steps. This modular cloning (MoClo) system can be readily automated and will be extremely useful for applications such as gene stacking and metabolic engineering.
PLOS ONE | 2011
Ernst Weber; Ramona Gruetzner; Stefan Werner; Carola Engler; Sylvestre Marillonnet
Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in vivo.
ACS Synthetic Biology | 2014
Carola Engler; Mark Youles; Ramona Gruetzner; Tim-Martin Ehnert; Stefan Werner; Jonathan D. G. Jones; Nicola J. Patron; Sylvestre Marillonnet
Plant Synthetic Biology requires robust and efficient methods for assembling multigene constructs. Golden Gate cloning provides a precision module-based cloning technique for facile assembly of multiple genes in one construct. We present here a versatile resource for plant biologists comprising a set of cloning vectors and 96 standardized parts to enable Golden Gate construction of multigene constructs for plant transformation. Parts include promoters, untranslated sequences, reporters, antigenic tags, localization signals, selectable markers, and terminators. The comparative performance of parts in the model plant Nicotiana benthamiana is discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Stefan Werner; Sylvestre Marillonnet; Gerd Hause; Victor Klimyuk; Yuri Gleba
Earlier attempts to express peptides longer than 20 aa on the surface of tobamoviruses such as tobacco mosaic virus have failed. Surprisingly, we found that a functional fragment of protein A (133 aa) can be displayed on the surface of a tobamovirus as a C-terminal fusion to the coat protein via a 15-aa linker. The macromolecular nature of these nanoparticles allowed the design of a simple protocol for purification of mAbs with a recovery yield of 50% and >90% product purity. The extremely dense packing of protein A on the nanoparticles (>2,100 copies per viral particle) results in an immunoadsorbent with a binding capacity of 2 g mAb per g. This characteristic, combined with the high level of expression of the nanoparticles (>3 g adsorbent per kg of leaf biomass), provides a very inexpensive self-assembling matrix that could meet the criteria for a single-use industrial immunoadsorbent for antibody purification.