Sylvia A. Morelli
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvia A. Morelli.
NeuroImage | 2011
Carrie L. Masten; Sylvia A. Morelli; Naomi I. Eisenberger
Despite empathys importance for promoting social interactions, neuroimaging research has largely overlooked empathy during social experiences. Here, we examined neural activity during empathy for social exclusion and assessed how empathy-related neural processes might relate to subsequent prosocial behavior toward the excluded victim. During an fMRI scan, participants observed one person being excluded by two others, and afterwards sent emails to each of these people. Later, a group of raters assessed how prosocial (e.g., helpful, comforting) the emails were. Observing exclusion (vs. inclusion) activated regions associated with mentalizing (dorsomedial prefrontal cortex, medial prefrontal cortex, precuneus), and highly empathic individuals activated both mentalizing regions and social pain-related regions (anterior insula, dorsal anterior cingulate cortex). Additionally, the empathy-related activity in the anterior insula and medial prefrontal cortex was associated with later prosocial behavior toward the victim, and exploratory mediation analyses indicated that medial prefrontal cortex activity, in particular, may support the link between trait empathy and prosocial behavior. Overall, findings suggest that empathy-related neural responses to social experiences may promote spontaneous prosocial treatment of those in need.
Journal of Cognitive Neuroscience | 2012
Lian T. Rameson; Sylvia A. Morelli; Matthew D. Lieberman
Empathy is a critical aspect of human emotion that influences the behavior of individuals as well as the functioning of society. Although empathy is fundamentally a subjective experience, no studies have yet examined the neural correlates of the self-reported experience of empathy. Furthermore, although behavioral research has linked empathy to prosocial behavior, no work has yet connected empathy-related neural activity to everyday, real-world helping behavior. Lastly, the widespread assumption that empathy is an automatic experience remains largely untested. It is also unknown whether differences in trait empathy reflect either variability in the automaticity of empathic responses or the capacity to feel empathy. In this study, 32 participants completed a diary study of helping behavior followed by an fMRI session, assessing empathic responses to sad images under three conditions: watching naturally, under cognitive load, and while empathizing. Across conditions, higher levels of self-reported experienced empathy were associated with greater activity in medial PFC (MPFC). Activity in MPFC was also correlated with daily helping behavior. Self-report of empathic experience and activity in empathy-related areas, notably MPFC, were higher in the empathize condition than in the load condition, suggesting that empathy is not a fully automatic experience. Additionally, high trait empathy participants displayed greater experienced empathy and stronger MPFC responses than low trait empathy individuals under cognitive load, suggesting that empathy is more automatic for individuals high in trait empathy. These results underline the critical role that MPFC plays in the instantiation of empathic experience and consequent behavior.
Social Cognitive and Affective Neuroscience | 2014
Sylvia A. Morelli; Lian T. Rameson; Matthew D. Lieberman
Previous neuroimaging studies on empathy have not clearly identified neural systems that support the three components of empathy: affective congruence, perspective-taking, and prosocial motivation. These limitations stem from a focus on a single emotion per study, minimal variation in amount of social context provided, and lack of prosocial motivation assessment. In the current investigation, 32 participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing painful, anxious, and happy events that varied in valence and amount of social context provided. They also completed a 14-day experience sampling survey that assessed real-world helping behaviors. The results demonstrate that empathy for positive and negative emotions selectively activates regions associated with positive and negative affect, respectively. In addition, the mirror system was more active during empathy for context-independent events (pain), whereas the mentalizing system was more active during empathy for context-dependent events (anxiety, happiness). Finally, the septal area, previously linked to prosocial motivation, was the only region that was commonly activated across empathy for pain, anxiety, and happiness. Septal activity during each of these empathic experiences was predictive of daily helping. These findings suggest that empathy has multiple input pathways, produces affect-congruent activations, and results in septally mediated prosocial motivation.
NeuroImage | 2012
Keely A. Muscatell; Sylvia A. Morelli; Emily B. Falk; Baldwin M. Way; Jennifer H. Pfeifer; Adam D. Galinsky; Matthew D. Lieberman; Mirella Dapretto; Naomi I. Eisenberger
The current research explored the neural mechanisms linking social status to perceptions of the social world. Two fMRI studies provide converging evidence that individuals lower in social status are more likely to engage neural circuitry often involved in mentalizing or thinking about others thoughts and feelings. Study 1 found that college students perception of their social status in the university community was related to neural activity in the mentalizing network (e.g., DMPFC, MPFC, precuneus/PCC) while encoding social information, with lower social status predicting greater neural activity in this network. Study 2 demonstrated that socioeconomic status, an objective indicator of global standing, predicted adolescents neural activity during the processing of threatening faces, with individuals lower in social status displaying greater activity in the DMPFC, previously associated with mentalizing, and the amygdala, previously associated with emotion/salience processing. These studies demonstrate that social status is fundamentally and neurocognitively linked to how people process and navigate their social worlds.
NeuroImage | 2015
Sylvia A. Morelli; Matthew D. Sacchet; Jamil Zaki
Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections.
Frontiers in Human Neuroscience | 2013
Sylvia A. Morelli; Matthew D. Lieberman
Although many studies have examined the neural basis of empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. Thirty-two participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, actively empathizing, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; and septal area, SA). Two key regions—the ventral AI and SA—were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching vs. empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy and social cognition (DMPFC, MPFC, TPJ, and amygdala). The results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions.
Psychological Science | 2013
Emily B. Falk; Sylvia A. Morelli; B. Locke Welborn; Karl Dambacher; Matthew D. Lieberman
Social interaction promotes the spread of values, attitudes, and behaviors. Here, we report on neural responses to ideas that are destined to spread. We scanned message communicators using functional MRI during their initial exposure to the to-be-communicated ideas. These message communicators then had the opportunity to spread the messages and their corresponding subjective evaluations to message recipients outside the scanner. Successful ideas were associated with neural responses in the communicators’ mentalizing systems and reward systems when they first heard the messages, prior to spreading them. Similarly, individuals more able to spread their own views to others produced greater mentalizing-system activity during initial encoding. Unlike prior social-influence studies that focused on the individuals being influenced, this investigation focused on the brains of influencers. Successful social influence is reliably associated with an influencer-to-be’s state of mind when first encoding ideas.
Emotion | 2015
Sylvia A. Morelli; Ihno A. Lee; Molly E. Arnn; Jamil Zaki
Individuals in close relationships help each other in many ways, from listening to each others problems, to making each other feel understood, to providing practical support. However, it is unclear if these supportive behaviors track each other across days and as stable tendencies in close relationships. Further, although past work suggests that giving support improves providers well-being, the specific features of support provision that improve providers psychological lives remain unclear. We addressed these gaps in knowledge through a daily diary study that comprehensively assessed support provision and its effects on well-being. We found that providers emotional support (e.g., empathy) and instrumental support represent distinct dimensions of support provision, replicating prior work. Crucially, emotional support, but not instrumental support, consistently predicted provider well-being. These 2 dimensions also interacted, such that instrumental support enhanced well-being of both providers and recipients, but only when providers were emotionally engaged while providing support. These findings illuminate the nature of support provision and suggest targets for interventions to enhance well-being.
Social Cognitive and Affective Neuroscience | 2014
Sylvia A. Morelli; Jared B. Torre; Naomi I. Eisenberger
Past research suggests that feeling understood enhances both personal and social well-being. However, little research has examined the neurobiological bases of feeling understood and not understood. We addressed these gaps by experimentally inducing felt understanding and not understanding as participants underwent functional magnetic resonance imaging. The results demonstrated that feeling understood activated neural regions previously associated with reward and social connection (i.e. ventral striatum and middle insula), while not feeling understood activated neural regions previously associated with negative affect (i.e. anterior insula). Both feeling understood and not feeling understood activated different components of the mentalizing system (feeling understood: precuneus and temporoparietal junction; not feeling understood: dorsomedial prefrontal cortex). Neural responses were associated with subsequent feelings of social connection and disconnection and were modulated by individual differences in rejection sensitivity. Thus, this study provides insight into the psychological processes underlying feeling understood (or not) and may suggest new avenues for targeted interventions that amplify the benefits of feeling understood or buffer individuals from the harmful consequences of not feeling understood.
Personality and Social Psychology Bulletin | 2016
Erik C. Nook; Desmond C. Ong; Sylvia A. Morelli; Jason P. Mitchell; Jamil Zaki
Generosity is contagious: People imitate others’ prosocial behaviors. However, research on such prosocial conformity focuses on cases in which people merely reproduce others’ positive actions. Hence, we know little about the breadth of prosocial conformity. Can prosocial conformity cross behavior types or even jump from behavior to affect? Five studies address these questions. In Studies 1 to 3, participants decided how much to donate to charities before learning that others donated generously or stingily. Participants who observed generous donations donated more than those who observed stingy donations (Studies 1 and 2). Crucially, this generalized across behaviors: Participants who observed generous donations later wrote more supportive notes to another participant (Study 3). In Studies 4 and 5, participants observed empathic or non-empathic group responses to vignettes. Group empathy ratings not only shifted participants’ own empathic feelings (Study 4), but they also influenced participants’ donations to a homeless shelter (Study 5). These findings reveal the remarkable breadth of prosocial conformity.