Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvia Diederichs is active.

Publication


Featured researches published by Sylvia Diederichs.


Biotechnology and Bioengineering | 2009

The baffled microtiter plate: Increased oxygen transfer and improved online monitoring in small scale fermentations

Matthias Funke; Sylvia Diederichs; Frank Kensy; Carsten Müller; Jochen Büchs

Most experiments in screening and process development are performed in shaken bioreactors. Today, microtiter plates are the preferred vessels for small‐scale microbial cultivations in high throughput, even though they have never been optimized for this purpose. To interpret the experimental results correctly and to obtain a base for a meaningful scale‐up, sufficient oxygen supply to the culture liquid is crucial. For shaken bioreactors this problem can generally be addressed by the introduction of baffles. Therefore, the focus of this study is to investigate how baffling and the well geometry affect the maximum oxygen transfer capacity (OTRmax) in microtiter plates. On a 48‐well plate scale, 30 different cross‐section geometries of a well were studied. It could be shown that the introduction of baffles into the common circular cylinder of a microtiter plate well doubles the maximum oxygen transfer capacity, resulting in values above 100 mmol/L/h (kLa > 600 1/h). To also guarantee a high volume for microbial cultivation, it is important to maximize the filling volume, applicable during orbital shaking. Additionally, the liquid height at the well bottom was examined, which is a decisive parameter for online‐monitoring systems such as the BioLector. This technology performs fiber‐optical measurements through the well bottom, therefore requires a constant liquid height at all shaking frequencies. Ultimately, a six‐petal flower‐shaped well geometry was shown to be the optimal solution taking into account all aforementioned criteria. With its favorable culture conditions and the possibility for unrestricted online monitoring, this novel microtiter plate is an efficient tool to gain meaningful results for interpreting and scaling‐up experiments in clone screening and bioprocess development. Biotechnol. Bioeng. 2009;103: 1118–1128.


Biotechnology and Bioengineering | 2010

Microfluidic BioLector—Microfluidic Bioprocess Control in Microtiter Plates

Matthias Funke; Andreas Buchenauer; Uwe Schnakenberg; Wilfried Mokwa; Sylvia Diederichs; Alan Mertens; Carsten Müller; Frank Kensy; Jochen Büchs

In industrial‐scale biotechnological processes, the active control of the pH‐value combined with the controlled feeding of substrate solutions (fed‐batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small‐scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale‐up and scale‐down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small‐scale batches are typically performed highly parallel and in high throughput, large‐scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber‐optic online‐monitoring device for microtiter plates (MTPs)—the BioLector technology—together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed‐batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user‐friendly and can easily be transferred to a disposable single‐use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH‐controlled and fed‐batch conditions in shaken MTPs. Biotechnol. Bioeng. 2010;107: 497–505.


Advances in Biochemical Engineering \/ Biotechnology | 2013

Orbitally Shaken Single-Use Bioreactors

Wolf Klöckner; Sylvia Diederichs; Jochen Büchs

: Orbitally shaken single-use reactors are promising reactors for upstream processing, because they fulfill three general requirements for single-use equipment. First, the design of the disposable parts is inherently simple and cost-efficient, because no complex built-in elements such as baffles or rotating stirrers are required. Second, the liquid distribution induced by orbital shaking is well-defined and accurately predictable. Third, the scale-up from small-scale systems, where shaken bioreactors are commonly applied, is simple and has been successfully proven up to the cubic meter scale. However, orbitally shaken single-use reactors are only suitable for certain applications such as cultivating animal or plant cells with low oxygen demand. Thus, detailed knowledge about the performance of such systems on different scales is essential to exploit their full potential. This article presents an overview about opportunities and limitations of shaken single-use reactors.


Microbial Cell Factories | 2014

Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments

Sylvia Diederichs; Anna Korona; Antje Staaden; Wolfgang Kroutil; Kohsuke Honda; Hisao Ohtake; Jochen Büchs

BackgroundMedia containing yeast extracts and other complex raw materials are widely used for the cultivation of microorganisms. However, variations in the specific nutrient composition can occur, due to differences in the complex raw material ingredients and in the production of these components. These lot-to-lot variations can affect growth rate, product yield and product quality in laboratory investigations and biopharmaceutical production processes. In the FDAs Process Analytical Technology (PAT) initiative, the control and assessment of the quality of critical raw materials is one key aspect to maintain product quality and consistency. In this study, the Respiration Activity Monitoring System (RAMOS) was used to evaluate the impact of different yeast extracts and commercial complex auto-induction medium lots on metabolic activity and product yield of four recombinant Escherichia coli variants encoding different enzymes.ResultsUnder non-induced conditions, the oxygen transfer rate (OTR) of E. coli was not affected by a variation of the supplemented yeast extract lot. The comparison of E. coli cultivations under induced conditions exhibited tremendous differences in OTR profiles and volumetric activity for all investigated yeast extract lots of different suppliers as well as lots of the same supplier independent of the E. coli variant. Cultivation in the commercial auto-induction medium lots revealed the same reproducible variations. In cultivations with parallel offline analysis, the highest volumetric activity was found at different cultivation times. Only by online monitoring of the cultures, a distinct cultivation phase (e.g. glycerol depletion) could be detected and chosen for comparable and reproducible offline analysis of the yield of functional product.ConclusionsThis work proves that cultivations conducted in complex media may be prone to significant variation in final product quality and quantity if the quality of the raw material for medium preparation is not thoroughly checked. In this study, the RAMOS technique enabled a reliable and reproducible screening and phenotyping of complex raw material lots by online measurement of the respiration activity. Consequently, complex raw material lots can efficiently be assessed if the distinct effects on culture behavior and final product quality and quantity are visualized.


Analytical and Bioanalytical Chemistry | 2012

A hydrogel-based versatile screening platform for specific biomolecular recognition in a well plate format

Meike V. Beer; Claudia Rech; Sylvia Diederichs; Kathrin Hahn; Kristina Bruellhoff; Martin Möller; Lothar Elling; Jürgen Groll

AbstractPrecise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems. FigureWe present a hydrogel coating system for well-plates that can be covalently modified with peptides, sugars or proteins by dip coating. These coatings then allow specific interaction screening of the immobilized ligands with peptides, proteins or cells.


Journal of Biological Engineering | 2014

Cross-section perimeter is a suitable parameter to describe the effects of different baffle geometries in shaken microtiter plates

Clemens Lattermann; Matthias Funke; Sven Hansen; Sylvia Diederichs; Jochen Büchs

BackgroundBiotechnological screening processes are performed since more than 8 decades in small scale shaken bioreactors like shake flasks or microtiter plates. One of the major issues of such reactors is the sufficient oxygen supply of suspended microorganisms. Oxygen transfer into the bulk liquid can in general be increased by introducing suitable baffles at the reactor wall. However, a comprehensive and systematic characterization of baffled shaken bioreactors has never been carried out so far. Baffles often differ in number, size and shape. The exact geometry of baffles in glass lab ware like shake flasks is very difficult to reproduce from piece to piece due to the hard to control flow behavior of molten glass during manufacturing. Thus, reproducibility of the maximum oxygen transfer capacity in such baffled shake flasks is hardly given.ResultsAs a first step to systematically elucidate the general effect of different baffle geometries on shaken bioreactor performance, the maximum oxygen transfer capacity (OTRmax) in baffled 48-well microtiter plates as shaken model reactor was characterized. This type of bioreactor made of plastic material was chosen, as the exact geometry of the baffles can be fabricated by highly reproducible laser cutting. As a result, thirty different geometries were investigated regarding their maximum oxygen transfer capacity (OTRmax) and liquid distribution during shaking. The relative perimeter of the cross-section area as new fundamental geometric key parameter is introduced. An empirical correlation for the OTRmax as function of the relative perimeter, shaking frequency and filling volume is derived. For the first time, this correlation allows a systematic description of the maximum oxygen transfer capacity in baffled microtiter plates.ConclusionsCalculated and experimentally determined OTRmax values agree within ± 30% accuracy. Furthermore, undesired out-of-phase operating conditions can be identified by using the relative perimeter as key parameter. Finally, an optimum well geometry characterized by an increased perimeter of 10% compared to the unbaffled round geometry is identified. This study may also assist to comprehensively describe and optimize the baffles of shake flasks in future.


Biointerphases | 2015

Quantifying ligand–cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge

Meike V. Beer; Kathrin Hahn; Sylvia Diederichs; Marlies Fabry; Smriti Singh; Steve J. Spencer; Jochen Salber; Martin Möller; Alexander G. Shard; Jürgen Groll

Hydrogels are extensively studied for biomaterials application as they provide water swollen noninteracting matrices in which specific binding motifs and enzyme-sensitive degradation sites can be incorporated to tailor cell adhesion, proliferation, and migration. Hydrogels also serve as excellent basis for surface modification of biomaterials where interfacial characteristics are decisive for implant success or failure. However, the three-dimensional nature of hydrogels makes it hard to distinguish between the bioactive ligand density at the hydrogel-cell interface that is able to interact with cells and the ligands that are immobilized inside the hydrogel and not accessible for cells. Here, the authors compare x-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), enzyme linked immunosorbent assay (ELISA), and the correlation with quantitative cell adhesion using primary human dermal fibroblasts (HDF) to gain insight into ligand distribution. The authors show that although XPS provides the most useful quantitative analysis, it lacks the sensitivity to measure biologically meaningful concentrations of ligands. However, ToF-SIMS is able to access this range provided that there are clearly distinguishable secondary ions and a calibration method is found. Detection by ELISA appears to be sensitive to the ligand density on the surface that is necessary to mediate cell adhesion, but the upper limit of detection coincides closely with the minimal ligand spacing required to support cell proliferation. Radioactive measurements and ELISAs were performed on amine reactive well plates as true 2D surfaces to estimate the ligand density necessary to allow cell adhesion onto hydrogel films. Optimal ligand spacing for HDF adhesion and proliferation on ultrathin hydrogel films was determined as 6.5 ± 1.5 nm.


Biotechnology Progress | 2018

Online measurement of the respiratory activity in shake flasks enables the identification of cultivation phases and patterns indicating recombinant protein production in various Escherichia coli host strains

Nina Ihling; Natalie Bittner; Sylvia Diederichs; Maximilian Schelden; Anna Korona; Georg Theo Höfler; Alexander Fulton; Karl-Erich Jaeger; Kohsuke Honda; Hisao Ohtake; Jochen Büchs

Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7‐RNA polymerase‐dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3‐hydroxybutyryl‐CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches.


Journal of Biological Engineering | 2014

Minireactor-based high-throughput temperature profiling for the optimization of microbial and enzymatic processes

Martin Kunze; Clemens Lattermann; Sylvia Diederichs; Wolfgang Kroutil; Jochen Büchs


Journal of Molecular Catalysis B-enzymatic | 2015

High-level production of (5S)-hydroxyhexane-2-one by two thermostable oxidoreductases in a whole-cell catalytic approach

Sylvia Diederichs; Katharina Linn; Janine Lückgen; Tobias Klement; Jan-Hendrik Grosch; Kohsuke Honda; Hisao Ohtake; Jochen Büchs

Collaboration


Dive into the Sylvia Diederichs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Korona

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Kensy

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathrin Hahn

University of Würzburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge