Sylvia Fanucchi
University of the Witwatersrand
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvia Fanucchi.
Biochemistry | 2008
Sylvia Fanucchi; Roslin J. Adamson; Heini W. Dirr
CLIC proteins function as anion channels when their structures convert from a soluble form to an integral membrane form. While very little is known about the mechanism of the conversion process, channel formation and activity are highly pH-dependent. In this study, the structural properties and conformational stability of CLIC1 were determined as a function of pH in the absence of membranes to improve our understanding of how its conformation changes when the protein encounters the acidic environment at the surface of a membrane. Although the global conformation and size of CLIC1 are not significantly altered by pH in the range of 5.5-8.2, equilibrium unfolding studies reveal that the protein molecule becomes destabilized at low pH, resulting in the formation of a highly populated intermediate with a solvent-exposed hydrophobic surface. Unlike the intermediates formed by many soluble pore-forming proteins for their insertion into membranes, the CLIC1 intermediate is not a molten globule. Acid-induced destabilization and partial unfolding of CLIC1 involve helix alpha1 which is the major structural element of the transmembrane region. We propose that the acidic environment encountered by CLICs at the surface of membranes primes the transmembrane region in the N-domain, thereby lowering the energy barrier for the conversion of soluble CLICs to their membrane-inserted forms.
Biochemistry | 2009
Stoyan Stoychev; Christos Nathaniel; Sylvia Fanucchi; Melissa Brock; Sheng Li; Kyle Asmus; Virgil L. Woods; Heini W. Dirr
Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2, and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilizing domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix alpha1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand beta2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer.
Journal of Biomolecular Structure & Dynamics | 2013
Previn Naicker; Ikechukwu Achilonu; Sylvia Fanucchi; Manuel A. Fernandes; Mahmoud A. A. Ibrahim; Heini W. Dirr; Mahmoud E. S. Soliman; Yasien Sayed
The HIV protease plays a major role in the life cycle of the virus and has long been a target in antiviral therapy. Resistance of HIV protease to protease inhibitors (PIs) is problematic for the effective treatment of HIV infection. The South African HIV-1 subtype C protease (C-SA PR), which contains eight polymorphisms relative to the consensus HIV-1 subtype B protease, was expressed in Escherichia coli, purified, and crystallized. The crystal structure of the C-SA PR was resolved at 2.7 Å, which is the first crystal structure of a HIV-1 subtype C protease that predominates in Africa. Structural analyses of the C-SA PR in comparison to HIV-1 subtype B proteases indicated that polymorphisms at position 36 of the homodimeric HIV-1 protease may impact on the stability of the hinge region of the protease, and hence the dynamics of the flap region. Molecular dynamics simulations showed that the flap region of the C-SA PR displays a wider range of movements over time as compared to the subtype B proteases. Reduced stability in the hinge region resulting from the absent E35-R57 salt bridge in the C-SA PR, most likely contributes to the increased flexibility of the flaps which may be associated with reduced susceptibility to PIs. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:36
Biochimica et Biophysica Acta | 2010
David Balchin; Sylvia Fanucchi; Ikechukwu Achilonu; Roslin J. Adamson; Jonathan Burke; Manuel A. Fernandes; Samantha Gildenhuys; Heini W. Dirr
Cytosolic glutathione transferases (GSTs) are major detoxification enzymes in aerobes. Each subunit has two distinct domains and an active site consisting of a G-site for binding GSH and an H-site for an electrophilic substrate. While the active site is located at the domain interface, the role of the stability of this interface in the catalytic function of GSTs is poorly understood. Domain 1 of class alpha GSTs has a conserved tryptophan (Trp21) in helix 1 that forms a major interdomain contact with helices 6 and 8 in domain 2. Replacing Trp21 with an alanine is structurally non-disruptive but creates a cavity between helices 1, 6 and 8 thus reducing the packing density and van der Waals contacts at the domain interface. This results in destabilization of the protein and a marked reduction in catalytic activity. While functionality at the G-site is not adversely affected by the W21A mutation, the H-site becomes more accessible to solvent and less favorable for the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB). Not only does the mutation result in a reduction in the energy for stabilizing the transition state formed in the S(N)Ar reaction between the substrates GSH and CDNB, it also compromises the ability of the enzyme to form and stabilize a transition state analogue (Meisenheimer complex) formed between GSH and 1,3,5-trinitrobenzene (TNB). The study demonstrates that the stability of the domain-domain interface plays a role in mediating the catalytic functionality of the active site, particularly the H-site, of class alpha GSTs.
Biochemistry | 2012
Ikechukwu Achilonu; Sylvia Fanucchi; Megan Cross; Manuel A. Fernandes; Heini W. Dirr
Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.
Biochemistry | 2014
Bradley Peter; Anton A. Polyansky; Sylvia Fanucchi; Heini W. Dirr
Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.
Biochemistry | 2012
Derryn Legg-E’Silva; Ikechukwu Achilonu; Sylvia Fanucchi; Stoyan Stoychev; Manuel A. Fernandes; Heini W. Dirr
The ion channel protein CLIC1 exists in both a soluble conformation in the cytoplasm and a membrane-bound conformation. The conformational stability of soluble CLIC1 demonstrates pH sensitivity which may be attributable to very specific residues that function as pH sensors. These sensors could be histidine or glutamate residues with pK(a) values that fall within the physiological pH range. The role of Glu81, a member of a topologically conserved buried salt bridge in CLIC1, as a pH sensor was investigated here. The mutants E81M, R29M, and E81M/R29M were designed to break the salt bridge between Glu81 and Arg29 and examine the effect of each member on the stability of the protein. Spectroscopic studies and the solved crystal structures indicated that the global structure of CLIC1 was not affected by the mutations. Urea-induced equilibrium unfolding unexpectedly showed E81M to stabilize CLIC1 at pH 7. This was due to stabilizing hydrophobic interactions with Met81 and a water-mediated compensatory H-bond between Met81 and Arg29. R29M and E81M/R29M destabilized CLIC1 at pH 7, and the unfolding transition changed from two-state to three-state, mimicking the wild type at pH 5.5. This observation points out the significance of the salt bridge in stabilizing the native state. The total unfolding free energy change of E81M CLIC1 does not change with pH, implying that Glu81 forms one of a network of pH-sensor residues in CLIC1 responsible for destabilization of the native state. This allows detachment of the N-domain from the C-domain at low pH.
Biochemistry | 2015
Ashleigh Blane; Sylvia Fanucchi
Forkhead box P2 (FOXP2) is a transcription factor expressed in cardiovascular, intestinal, and neural tissues during embryonic development and is implicated in language development. FOXP2 like other FOX proteins contains a DNA binding domain known as the forkhead domain (FHD). The FHD interacts with DNA by inserting helix 3 into the major groove. One of these DNA-protein interactions is a direct hydrogen bond that is formed with His554. FOXP2 is localized in the nuclear compartment that has a pH of 7.5. Histidine contains an imidazole side chain in which the amino group typically has a pKa of ~6.5. It seems possible that pH fluctuations around 6.5 may result in changes in the protonation state of His554 and thus the ability of the FOXP2 FHD to bind DNA. To investigate the effect of pH on the FHD, both the structure and the binding affinity were studied in the pH range of 5-9. This was done in the presence and absence of DNA. The structure was assessed using size exclusion chromatography, far-UV circular dichroism, and intrinsic and extrinsic fluorescence. The results indicated that while pH did not affect the secondary structure in the presence or absence of DNA, the tertiary structure was pH sensitive and the protein was less compact at low pH. Furthermore, the presence of DNA caused the protein to become more compact at low pH and also had the potential to increase the dimerization propensity. Fluorescence anisotropy was used to investigate the effect of pH on the FOXP2 FHD DNA binding affinity. It was found that pH had a direct effect on binding affinity. This was attributed to the altered hydrogen bonding patterns upon protonation or deprotonation of His554. These results could implicate pH as a means of regulating transcription by the FOXP2 FHD, which may also have repercussions for the behavior of this protein in cancer cells.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Ikechukwu Achilonu; Samantha Gildenhuys; Loren Fisher; Jonathan Burke; Sylvia Fanucchi; B. Trevor Sewell; Manuel A. Fernandes; Heini W. Dirr
The common fold shared by members of the glutathione-transferase (GST) family has a topologically conserved isoleucine residue at the N-terminus of helix 3 which is involved in the packing of helix 3 against two beta-strands in domain 1. The role of the isoleucine residue in the structure, function and stability of GST was investigated by replacing the Ile71 residue in human GSTA1-1 by alanine or valine. The X-ray structures of the I71A and I71V mutants resolved at 1.75 and 2.51 A, respectively, revealed that the mutations do not alter the overall structure of the protein compared with the wild type. Urea-induced equilibrium unfolding studies using circular dichroism and tryptophan fluorescence suggest that the mutation of Ile71 to alanine or valine reduces the stability of the protein. A functional assay with 1-chloro-2,4-dinitrobenzene shows that the mutation does not significantly alter the function of the protein relative to the wild type. Overall, the results suggest that conservation of the topologically conserved Ile71 maintains the structural stability of the protein but does not play a significant role in catalysis and substrate binding.
Biochemistry | 2016
Gavin Morris; Sylvia Fanucchi
Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.