Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvia Musto is active.

Publication


Featured researches published by Sylvia Musto.


Molecular Cancer Therapeutics | 2006

Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of β-tubulin (Asp26Glu) and less stable microtubules

Malathi Hari; Frank Loganzo; Tami Annable; Xingzhi Tan; Sylvia Musto; Daniel B. Morilla; James H. Nettles; James P. Snyder; Lee M. Greenberger

Resistance to paclitaxel-based therapy is frequently encountered in the clinic. The mechanisms of intrinsic or acquired paclitaxel resistance are not well understood. We sought to characterize the resistance mechanisms that develop upon chronic exposure of a cancer cell line to paclitaxel in the presence of the P-glycoprotein reversal agent, CL-347099. The epidermoid tumor line KB-3-1 was exposed to increasing concentrations of paclitaxel and 5 μmol/L CL-347099 for up to 1 year. Cells grown in 15 nmol/L paclitaxel plus CL-347099 (KB-15-PTX/099) developed 18-fold resistance to paclitaxel and were dependent upon paclitaxel for maximal growth. They grew well and retained resistance to paclitaxel when grown in athymic mice. Cross-resistance (3- to 5-fold) was observed in tissue culture to docetaxel, the novel taxane MAC-321, and epothilone B. Collateral sensitivity (∼3-fold) was observed to the depolymerizing agents vinblastine, dolastatin-10, and HTI-286. KB-15-PTX/099–resistant cells did not overexpress P-glycoprotein nor did they have an alteration of [14C]paclitaxel accumulation compared with parental cells. However, a novel point mutation (T to A) resulting in Asp26 to glutamate substitution in class I (M40) β-tubulin was found. Based on an electron crystallography structure of Zn-stabilized tubulin sheets, the phenyl ring of C-3′ NHCO-C6H5 of paclitaxel makes contact with Asp26 of β-tubulin, suggesting a ligand-induced mutation. Optimized model complexes of paclitaxel, docetaxel, and MAC-321 in β-tubulin show a novel hydrogen bonding pattern for the glutamate mutant and rationalize the observed resistance profiles. However, a mutation in the paclitaxel binding pocket does not explain the phenotype completely. KB-15-PTX/099 cells have impaired microtubule stability as determined by a reduced percentage of tubulin in microtubules and reflected by less acetylated tubulin. These results suggest that a mutation in tubulin might affect microtubule stability as well as drug binding and contribute to the observed resistance profile. [Mol Cancer Ther 2006;5(2):270–8]


Journal of Medicinal Chemistry | 2014

Discovery of Cytotoxic Dolastatin 10 Analogues with N-Terminal Modifications

A Maderna; M Doroski; Chakrapani Subramanyam; A Porte; C.A Leverett; Beth Cooper Vetelino; Zecheng Chen; H Risley; K Parris; J Pandit; A.H Varghese; S Shanker; C Song; S.C Sukuru; K.A Farley; M.M Wagenaar; M.J Shapiro; Sylvia Musto; M.H Lam; Frank Loganzo; C.J. O'Donnell

Auristatins, synthetic analogues of the antineoplastic natural product Dolastatin 10, are ultrapotent cytotoxic microtubule inhibitors that are clinically used as payloads in antibody-drug conjugates (ADCs). The design and synthesis of several new auristatin analogues with N-terminal modifications that include amino acids with α,α-disubstituted carbon atoms are described, including the discovery of our lead auristatin, PF-06380101. This modification of the peptide structure is unprecedented and led to analogues with excellent potencies in tumor cell proliferation assays and differential ADME properties when compared to other synthetic auristatin analogues that are used in the preparation of ADCs. In addition, auristatin cocrystal structures with tubulin are being presented that allow for the detailed examination of their binding modes. A surprising finding is that all analyzed analogues have a cis-configuration at the Val-Dil amide bond in their functionally relevant tubulin bound state, whereas in solution this bond is exclusively in the trans-configuration. This remarkable observation shines light onto the preferred binding mode of auristatins and serves as a valuable tool for structure-based drug design.


Molecular Cancer Therapeutics | 2015

Tumor Cells Chronically Treated with a Trastuzumab–Maytansinoid Antibody–Drug Conjugate Develop Varied Resistance Mechanisms but Respond to Alternate Treatments

Frank Loganzo; Xingzhi Tan; Matthew Sung; Guixian Jin; Jeremy Myers; Eugene Melamud; Fang Wang; Veronica Diesl; Sylvia Musto; My-Hanh Lam; William Hu; Manoj Charati; Kiran Khandke; Kenny Sung Kyoo Kim; Mike Cinque; Judy Lucas; Edmund I. Graziani; Andreas Maderna; Christopher J. O'Donnell; Kim Arndt; Hans-Peter Gerber

Antibody–drug conjugates (ADC) are emerging as clinically effective therapy. We hypothesized that cancers treated with ADCs would acquire resistance mechanisms unique to immunoconjugate therapy and that changing ADC components may overcome resistance. Breast cancer cell lines were exposed to multiple cycles of anti-Her2 trastuzumab–maytansinoid ADC (TM-ADC) at IC80 concentrations followed by recovery. The resistant cells, 361-TM and JIMT1-TM, were characterized by cytotoxicity, proteomic, transcriptional, and other profiling. Approximately 250-fold resistance to TM-ADC developed in 361-TM cells, and cross-resistance was observed to other non–cleavable-linked ADCs. Strikingly, these 361-TM cells retained sensitivity to ADCs containing cleavable mcValCitPABC-linked auristatins. In JIMT1-TM cells, 16-fold resistance to TM-ADC developed, with cross-resistance to other trastuzumab-ADCs. Both 361-TM and JIMT1-TM cells showed minimal resistance to unconjugated mertansine (DM1) and other chemotherapeutics. Proteomics and immunoblots detected increased ABCC1 (MRP1) drug efflux protein in 361-TM cells, and decreased Her2 (ErbB2) in JIMT1-TM cells. Proteomics also showed alterations in various pathways upon chronic exposure to the drug in both cell models. Tumors derived from 361-TM cells grew in mice and were refractory to TM-ADC compared with parental cells. Hence, acquired resistance to trastuzumab–maytansinoid ADC was generated in cultured cancer cells by chronic drug treatment, and either increased ABCC1 protein or reduced Her2 antigen were primary mediators of resistance. These ADC-resistant cell models retain sensitivity to other ADCs or standard-of-care chemotherapeutics, suggesting that alternate therapies may overcome acquired ADC resistance. Mol Cancer Ther; 14(4); 952–63. ©2015 AACR.


Journal of the American Chemical Society | 2014

Synthesis, molecular editing, and biological assessment of the potent cytotoxin leiodermatolide.

Damien Mailhol; Jens Willwacher; Nina Kausch-Busies; Elizabeith E. Rubitski; Zhanna Sobol; Maik Schuler; My-Hanh Lam; Sylvia Musto; Frank Loganzo; Andreas Maderna; Alois Fürstner

It was by way of total synthesis that the issues concerning the stereostructure of leiodermatolide (1) have recently been solved; with the target now being unambiguously defined, the mission of synthesis changes as to secure a meaningful supply of this exceedingly scarce natural product derived from a deep-sea sponge. To this end, a scalable route of 19 steps (longest linear sequence) has been developed, which features a catalytic asymmetric propargylation of a highly enolizable β-keto-lactone, a ring closing alkyne metathesis and a modified Stille coupling as the key transformations. Deliberate digression from this robust blueprint brought a first set of analogues into reach, which allowed the lead qualities of 1 to be assessed. The acquired biodata show that 1 is a potent cytotoxin in human tumor cell proliferation assays, distinguished by GI50 values in the ≤3 nM range even for cell lines expressing the Pgp efflux transporter. Studies with human U2OS cells revealed that 1 causes mitotic arrest, micronucleus induction, centrosome amplification and tubulin disruption, even though no evidence for direct tubulin binding has been found in cell-free assays; moreover, the compound does not seem to act through kinase inhibition. Indirect evidence points at centrosome declustering as a possible mechanism of action, which provides a potentially rewarding outlook in that centrosome declustering agents hold promise of being inherently selective for malignant over healthy human tissue.


Bioconjugate Chemistry | 2016

Development of Solid-Phase Site-Specific Conjugation and Its Application toward Generation of Dual Labeled Antibody and Fab Drug Conjugates.

Sujiet Puthenveetil; Sylvia Musto; Frank Loganzo; L. Nathan Tumey; Christopher J. O’Donnell; Edmund I. Graziani

The focus of the antibody-drug conjugate (ADC) field is shifting toward development of site-specific, next-generation ADCs to address the issue of heterogeneity, metabolic instability, conjugatability, and less than ideal therapeutic index associated with the conventional (heterogeneous) ADCs. It is evident from the recent literature that the site of conjugation, the structure of the linker, and the physicochemical properties of the linker-payload all have a significant impact on the safety and efficacy of the resulting ADCs. Screening multiple linker-payloads on multiple sites of an antibody presents a combinatorial problem that necessitates high-throughput conjugation and purification methodology to identify ADCs with the best combination of site and payload. Toward this end, we developed a protein A/L-based solid-phase, site-specific conjugation and purification method that can be used to generate site-specific ADCs in a 96-well plate format. This solid-phase method has been shown to be versatile because of its compatibility with various conjugation functional handles such as maleimides, haloacetamides, copper free click substrates, and transglutaminase substrates. The application of this methodology was further expanded to generate dual labeled, site-specific antibody and Fab conjugates.


ACS Medicinal Chemistry Letters | 2016

Optimization of Tubulysin Antibody–Drug Conjugates: A Case Study in Addressing ADC Metabolism

L. Nathan Tumey; Carolyn A. Leverett; Beth Cooper Vetelino; Fengping Li; Brian Rago; Xiaogang Han; Frank Loganzo; Sylvia Musto; Guoyun Bai; Sai Chetan K. Sukuru; Edmund I. Graziani; Sujiet Puthenveetil; Jeffrey M. Casavant; Anokha S. Ratnayake; Kimberly Marquette; Sarah Hudson; Venkata Ramana Doppalapudi; Joseph Stock; Lioudmila Tchistiakova; Andrew J. Bessire; Tracey Clark; Judy Lucas; Christine Hosselet; Christopher J. O’Donnell; Chakrapani Subramanyam

As part of our efforts to develop new classes of tubulin inhibitor payloads for antibody–drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays. Second, site-specific conjugation was employed in order to design ADCs with reduced metabolic liabilities. Using the later approach, we were able to identify a conjugate at the 334C position of the heavy chain that resulted in an ADC with considerably reduced metabolism and improved efficacy. The examples discussed herein provide one of the clearest demonstrations to-date that site of conjugation can play a critical role in addressing metabolic and PK liabilities of an ADC. Moreover, a clear correlation was identified between the hydrophobicity of an ADC and its susceptibility to metabolic enzymes. Importantly, this study demonstrates that traditional medicinal chemistry strategies can be effectively applied to ADC programs.


Aaps Journal | 2017

Site Selection: a Case Study in the Identification of Optimal Cysteine Engineered Antibody Drug Conjugates

L. Nathan Tumey; Fengping Li; Brian Rago; Xiaogang Han; Frank Loganzo; Sylvia Musto; Edmund I. Graziani; Sujiet Puthenveetil; Jeffrey M. Casavant; Kimberly Marquette; Tracey Clark; Jack Bikker; Eric M. Bennett; Frank Barletta; Nicole Piche-Nicholas; Amy Tam; Christopher J. O’Donnell; Hans Gerber; Lioudmila Tchistiakova

As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs. However, we demonstrate that the rate of cathepsin-mediated linker cleavage is heavily dependent upon site and is closely correlated with ADC hydrophobicity, thus confirming other recent reports of this phenomenon. Interestingly, conjugates with high rates of cathepsin-mediated linker cleavage did not exhibit decreased plasma stability. In fact, the major source of plasma instability was shown to be retro-Michael mediated deconjugation. This process is known to be impeded by succinimide hydrolysis, and thus, we undertook a series of mutational experiments demonstrating that basic residues located nearby the site of conjugation can be a significant driver of succinimide ring opening. Finally, we show that total antibody PK exposure in rat was loosely correlated with ADC hydrophobicity. It is our hope that these observations will help the ADC community to build “design rules” that will enable more efficient prosecution of next-generation ADC discovery programs.


Bioorganic & Medicinal Chemistry Letters | 2013

New cytotoxic benzosuberene analogs. Synthesis, molecular modeling and biological evaluation

Zecheng Chen; Andreas Maderna; Sai Chetan K. Sukuru; Melissa Wagenaar; Christopher J. O’Donnell; My-Hanh Lam; Sylvia Musto; Frank Loganzo

In this Letter we describe the synthesis and biological evaluation of new benzosuberene analogs with structural modifications on the B-ring. The focus was initially to probe the chemical space around the B-ring C-8 position. This position was readily available for derivatization chemistry using our recently developed new synthesis for this compound class. Furthermore, we describe two new B-ring analogs, one containing a diene and the other a cyclic ether group. Both new analogs show excellent potencies in tumor cell proliferation assays. In addition, we describe molecular modeling studies that provide a binding rationale for reference compound 8 in the colchicine binding site using the known colchicine crystal structure. We also examine whether the cell based potency data obtained with selected new analogs are supported by modeling results.


PLOS ONE | 2017

Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate

Sujiet Puthenveetil; Haiyin He; Frank Loganzo; Sylvia Musto; Jesse Teske; Michael R. Green; Xingzhi Tan; Christine Hosselet; Judy Lucas; L. Nathan Tumey; Puja Sapra; Chakrapani Subramanyam; Christopher J. O’Donnell; Edmund I. Graziani

Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.


Cancer Research | 2014

Abstract 4837: Extracellular proteolytic cleavage of peptide-linked antibody-drug conjugates promotes bystander killing of cancer cells

My-Hanh Lam; Judy Lucas; Andreas Maderna; Hallie Wald; Megan Wojciechowicz; Russell Dushin; Bryan Peano; Fang Wang; Jeremy Myers; Xingzhi Tan; Sylvia Musto; Manoj Charati; Hans-Peter Gerber; Frank Loganzo

Antibody drug conjugates (ADCs) are designed to deliver cytotoxics to tumor cells via binding to surface antigen followed by internalization and intracellular drug release. ADC linkers are typically categorized as non-cleavable or cleavable; a cleavable linker example is Y_mcValCitPABC_X, with antibody Y, a dipeptide sequence with self-immolative PABC spacer, and payload X. This linker is known to be cleaved by endosomal/lysosomal proteases such as cathepsins, releasing attached payload. In addition to intracellular processing of this linker, we report that conditioned media of cultured tumor cell lines is sufficient to promote extracellular cleavage of ADCs with peptide-linked payloads. Cultured cell lines N87 (gastric) and U87 (glioblastoma), and patient-derived xenograft PA0165 (pancreatic) adapted to in vitro culture, were plated either in standard 2D culture or in 3D Cultrex embedded culture. After 3 - 7 days, conditioned media from cells was transferred onto MDA-MB-468 or HT29 cells, and then ADCs (Y_mcValCitPABC_Aur) were added to cultures. ADCs were non-targeting IgG conjugated via cleavable dipeptide-PABC linker to auristatin tubulin inhibitor. Minimal cytotoxicity was observed with ADC alone on 468 or HT29 cells. However, in the presence of conditioned media from N87, U87, or PA0165 cells plus the ADC, cytotoxicity was observed in the recipient cells (up to 31, 22, 56% growth inhibition respectively at 100 nM ADC). Moreover, in all cases, the magnitude of the response was greatest when cells providing conditioned media were grown in 3D culture (up to 56, 48, 70%, respectively). In contrast, minimal response was observed using conditioned media from other cancer cell lines (ie HCC2429, 1 - 17%). Additional analyses were conducted by incubating conditioned media from these cells with a dipeptide-based cleavable substrate with fluorescent probe and measuring released product in a plate-based assay. Conditioned media promoted fluorescence, suggesting proteolytic enzymes secreted by cells. An ELISA confirmed the presence of cathepsins in conditioned media. Complementing these studies, proteolytic activity was detected in the interstitial fluid derived from tumors grown in athymic mice. Fluid extracted from xenograft tumors (cultured cancer lines and patient-derived tumors) was analyzed for proteolytic activity using cleavable-fluorescent linker-probe in a plate assay. The majority of samples demonstrated proteolytic activity. These data are consistent with reported secretion of cathepsins by cancer cells and we now show that these proteases may mediate extracellular release of cytotoxic payloads from ADCs containing peptide-based cleavable linkers. This activity is magnified when cells are grown in 3D culture and is observed in tumor xenografts grown in vivo. This response may provide a beneficial bystander effect of ADCs on antigen negative cells in a heterogenous tumor population. Citation Format: My-Hanh Lam, Judy Lucas, Andreas Maderna, Hallie Wald, Megan Wojciechowicz, Russell Dushin, Bryan Peano, Fang Wang, Jeremy Myers, Xingzhi Tan, Sylvia Musto, Manoj Charati, Hans-Peter Gerber, Frank Loganzo. Extracellular proteolytic cleavage of peptide-linked antibody-drug conjugates promotes bystander killing of cancer cells. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4837. doi:10.1158/1538-7445.AM2014-4837

Collaboration


Dive into the Sylvia Musto's collaboration.

Researchain Logo
Decentralizing Knowledge