Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylviane Hoos is active.

Publication


Featured researches published by Sylviane Hoos.


The EMBO Journal | 2010

AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX.

Cédric Artus; Hanan Boujrad; Aı̈da Bouharrour; Marie-Noëlle Brunelle; Sylviane Hoos; Victor J. Yuste; Pascal Lenormand; Jean-Claude Rousselle; Abdelkader Namane; Patrick England; Lorenzo Hk; Santos A. Susin

Programmed necrosis induced by DNA alkylating agents, such as MNNG, is a caspase‐independent mode of cell death mediated by apoptosis‐inducing factor (AIF). After poly(ADP‐ribose) polymerase 1, calpain, and Bax activation, AIF moves from the mitochondria to the nucleus where it induces chromatinolysis and cell death. The mechanisms underlying the nuclear action of AIF are, however, largely unknown. We show here that, through its C‐terminal proline‐rich binding domain (PBD, residues 543–559), AIF associates in the nucleus with histone H2AX. This interaction regulates chromatinolysis and programmed necrosis by generating an active DNA‐degrading complex with cyclophilin A (CypA). Deletion or directed mutagenesis in the AIF C‐terminal PBD abolishes AIF/H2AX interaction and AIF‐mediated chromatinolysis. H2AX genetic ablation or CypA downregulation confers resistance to programmed necrosis. AIF fails to induce chromatinolysis in H2AX or CypA‐deficient nuclei. We also establish that H2AX is phosphorylated at Ser139 after MNNG treatment and that this phosphorylation is critical for caspase‐independent programmed necrosis. Overall, our data shed new light in the mechanisms regulating programmed necrosis, elucidate a key nuclear partner of AIF, and uncover an AIF apoptogenic motif.


Journal of Clinical Investigation | 2008

FcγRIV is a mouse IgE receptor that resembles macrophage FcεRI in humans and promotes IgE-induced lung inflammation

David A. Mancardi; Bruno Iannascoli; Sylviane Hoos; Patrick England; Marc Daëron; Pierre Bruhns

FcgammaRIV is a recently identified mouse activating receptor for IgG2a and IgG2b that is expressed on monocytes, macrophages, and neutrophils; herein it is referred to as mFcgammaRIV. Although little is known about mFcgammaRIV, it has been proposed to be the mouse homolog of human FcgammaRIIIA (hFcgammaRIIIA) because of high sequence homology. Our work, however, has revealed what we believe to be new properties of mFcgammaRIV that endow this receptor with a previously unsuspected biological significance; we have shown that it is a low-affinity IgE receptor for all IgE allotypes. Although mFcgammaRIV functioned as a high-affinity IgG receptor, mFcgammaRIV-bound monomeric IgGs were readily displaced by IgE immune complexes. Engagement of mFcgammaRIV by IgE immune complexes induced bronchoalveolar and peritoneal macrophages to secrete cytokines, suggesting that mFcgammaRIV may be an equivalent of human FceRI(alphagamma), which is expressed by macrophages and neutrophils and especially in atopic individuals, rather than an equivalent of hFcgammaRIIIA, which has no affinity for IgE. Using mice lacking 3 FcgammaRs and 2 FceRs and expressing mFcgammaRIV only, we further demonstrated that mFcgammaRIV promotes IgE-induced lung inflammation. These data lead us to propose a mouse model of IgE-induced lung inflammation in which cooperation exists between mast cells and mFcgammaRIV-expressing lung cells. We therefore suggest that a similar cooperation may occur between mast cells and hFceRI-expressing lung cells in human allergic asthma.


PLOS Pathogens | 2012

Structural and functional insights into the malaria parasite moving junction complex.

Brigitte Vulliez-Le Normand; Michelle L. Tonkin; Mauld H. Lamarque; Susann Langer; Sylviane Hoos; Magali Roques; Frederick A. Saul; Bart W. Faber; Graham A. Bentley; Martin J. Boulanger; Maryse Lebrun

Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.


Science Signaling | 2010

Attenuation of Rabies Virulence: Takeover by the Cytoplasmic Domain of Its Envelope Protein

Christophe Prehaud; Nicolas Wolff; Elouan Terrien; Mireille Lafage; Françoise Mégret; Nicolas Babault; Florence Cordier; Gene S. Tan; Elodie Maitrepierre; Pauline Ménager; Damien Chopy; Sylviane Hoos; Patrick England; Muriel Delepierre; Matthias J. Schnell; Henri Buc; Monique Lafon

Survival of rabies virus–infected neurons depends on a single amino acid in the PDZ-binding site of a viral protein. Tipping the Balance Strains of rabies virus, which infects neurons, may be virulent, in which case the cells survive long enough for the virus to replicate and spread, or they may be attenuated, in which case the infected cells die by apoptosis. Préhaud et al. compared one attenuated and one virulent viral strain and found that a single amino acid change in a region of a viral envelope protein that binds to host cell proteins was sufficient to account for the death or survival of infected cells. The binding properties of the attenuated virus protein were expanded, thereby affecting the balance in the activities of host kinases and phosphatases sufficiently to trigger cell death. These findings may inform strategies to engineer attenuated viruses, which are often used in live vaccines. The capacity of a rabies virus to promote neuronal survival (a signature of virulence) or death (a marker of attenuation) depends on the cellular partners recruited by the PDZ-binding site (PDZ-BS) of its envelope glycoprotein (G). Neuronal survival requires the selective association of the PDZ-BS of G with the PDZ domains of two closely related serine-threonine kinases, MAST1 and MAST2. Here, we found that a single amino acid change in the PDZ-BS triggered the apoptotic death of infected neurons and enabled G to interact with additional PDZ partners, in particular the tyrosine phosphatase PTPN4. Knockdown of PTPN4 abrogated virus-mediated apoptosis. Thus, we propose that attenuation of rabies virus requires expansion of the set of host PDZ proteins with which G interacts, which interferes with the finely tuned homeostasis required for survival of the infected neuron.


Journal of Biological Chemistry | 2007

Structural and Thermodynamic Bases for the Design of Pure Prolactin Receptor Antagonists X-RAY STRUCTURE OF Del1-9-G129R-hPRL

Jean-Baptiste Jomain; Estelle Tallet; Isabelle Broutin; Sylviane Hoos; Jan van Agthoven; Arnaud Ducruix; Paul A. Kelly; Patrick England; Vincent Goffin

Competitive antagonists of the human prolactin (hPRL) receptor are a novel class of molecules of potential therapeutic interest in the context of cancer. We recently developed the pure antagonist Del1-9-G129R-hPRL by deleting the nine N-terminal residues of G129R-hPRL, a first generation partial antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly129 mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly129 mutations but not by those involving the N terminus. We therefore propose that residual agonism can be abolished either by further disrupting hormone site 2-receptor contacts by N-terminal deletion, as in Del1-9-G129R-hPRL, or by stabilizing hPRL and constraining its intrinsic flexibility, as in G129V-hPRL.


Journal of Biological Chemistry | 2010

Crystal Structure of an Affinity-matured Prolactin Complexed to Its Dimerized Receptor Reveals the Topology of Hormone Binding Site 2

Isabelle Broutin; Jean-Baptiste Jomain; Estelle Tallet; Jan van Agthoven; Bertrand Raynal; Sylviane Hoos; Paul A. Kelly; Arnaud Ducruix; Patrick England; Vincent Goffin

We report the first crystal structure of a 1:2 hormone·receptor complex that involves prolactin (PRL) as the ligand, at 3.8-Å resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely related PRL receptor (PRLR) ligand. This structure allows one to draw up an exhaustive inventory of the residues involved at the PRL·PRLR site 2 interface, consistent with all previously reported site-directed mutagenesis data. We propose, with this description, an interaction model involving three structural components of PRL site 2 (“three-pin plug”): the conserved glycine 129 of helix α3, the hydrogen bond network involving surrounding residues (glycine cavity), and the N terminus. The model provides a molecular basis for the properties of the different PRL analogs designed to date, including PRLR antagonists. Finally, comparison of our 1:2 PRL·PRLR2 structure with those of free PRL and its 1:1 complex indicates that the structure of PRL undergoes significant changes when binding the first, but not the second receptor. This suggests that the second PRLR moiety adapts to the 1:1 complex rather than the opposite. In conclusion, this structure will be a useful guiding tool for further investigations of the molecular mechanisms involved in PRLR dimerization and activation, as well as for the optimization of PRLR antagonists, an emerging class of compounds with high therapeutic potential against breast and prostate cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural basis of myosin V Rab GTPase-dependent cargo recognition

Olena Pylypenko; Wikayatou Attanda; Charles Gauquelin; Marion Lahmani; Doudouh Coulibaly; Bruno Baron; Sylviane Hoos; Margaret A. Titus; Patrick England; Anne Houdusse

Significance Directed movement is essential for life, and cytoskeleton-based motors generate mechanical force and motion to precisely organize the cell. Their selective recruitment and activation at particular times and positions in cells is critical to numerous cell processes. This paper provides unique insights into the specific recognition of cellular compartments by the myosin V nanomotor via direct or indirect interactions with Rab GTPases. These studies highlight the role of plasticity in the binding site to achieve selectivity in cargo/motor recognition. We also describe how the globular tail domain sequence of the motor diverged among isoforms during evolution to maintain core shared functions while promoting diversification of cellular roles by acquiring new specific partner interactions. Specific recognition of the cargo that molecular motors transport or tether to cytoskeleton tracks allows them to perform precise cellular functions at particular times and positions in cells. However, very little is known about how evolution has favored conservation of functions for some isoforms, while also allowing for the generation of new recognition sites and specialized cellular functions. Here we present several crystal structures of the myosin Va or the myosin Vb globular tail domain (GTD) that gives insights into how the motor is linked to the recycling membrane compartments via Rab11 or to the melanosome membrane via recognition of the melanophilin adaptor that binds to Rab27a. The structures illustrate how the Rab11-binding site has been conserved during evolution and how divergence at another site of the GTD allows more specific interactions such as the specific recognition of melanophilin by the myosin Va isoform. With atomic structural insights, these structures also show how either the partner or the GTD structural plasticity upon association is critical for selective recruitment of the motor.


FEBS Letters | 2009

The FHA-containing protein GarA acts as a phosphorylation-dependent molecular switch in mycobacterial signaling.

Patrick England; Annemarie Wehenkel; Sonia Martins; Sylviane Hoos; Gwénaëlle André-Leroux; Andrea Villarino; Pedro M. Alzari

MINT‐6804218: GarA (uniprotkb:P64897) and GarA (uniprotkb:P64897) bind (MI:0407) by isothermal titration calorimetry (MI:0065)


Molecular Microbiology | 2011

Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori.

Meriem El Ghachi; Pierre-Jean Matteï; Chantal Ecobichon; Alexandre Martins; Sylviane Hoos; Christine Schmitt; Frédéric Colland; Christine Ebel; Marie-Christine Prévost; Frank Gabel; Patrick England; Andréa Dessen; Ivo G. Boneca

The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two‐hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross‐linking. Small angle X‐ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C‐terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.


Microbial Cell Factories | 2014

Quality assessment and optimization of purified protein samples: why and how?

Bertrand Raynal; Pascal Lenormand; Bruno Baron; Sylviane Hoos; Patrick England

Purified protein quality control is the final and critical check-point of any protein production process. Unfortunately, it is too often overlooked and performed hastily, resulting in irreproducible and misleading observations in downstream applications. In this review, we aim at proposing a simple-to-follow workflow based on an ensemble of widely available physico-chemical technologies, to assess sequentially the essential properties of any protein sample: purity and integrity, homogeneity and activity. Approaches are then suggested to optimize the homogeneity, time-stability and storage conditions of purified protein preparations, as well as methods to rapidly evaluate their reproducibility and lot-to-lot consistency.

Collaboration


Dive into the Sylviane Hoos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Broutin

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Vincent Goffin

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan van Agthoven

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge