Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Becquevort is active.

Publication


Featured researches published by Sylvie Becquevort.


Hydrobiologia | 1990

Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control?

Gilles Billen; Pierre Servais; Sylvie Becquevort

Measurements of bacterial biomass, production and mortality have been carried out in a large range of aquatic environments, including eutrophic and oligotrophic ones. The general trends of variations of bacterial biomass, size, specific growth rate and mortality rate in all these environments are examined. The overall flux of bacterial production is taken as an index of the flux of organic matter available to bacteria, thus characterizing the richness of the environment. Bacterial biomass is roughly proportional to richness, while mean cell size increases with it. The turnover rate of biomass, as revealed either by growth or by mortality rates, appears to be fairly independent of richness.These observations are compatible with a simple resource-limited (bottom-up controlled) model of the dynamics of bacterioplankton. On the other hand, they are in contradiction with the predictions of a predator-controlled (top-down controlled) model.


Deep-sea Research Part I-oceanographic Research Papers | 2000

Modeling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992

Christiane Lancelot; E. Hannon; Sylvie Becquevort; Cornelis Veth; de Henricus Baar

The high nutrient low chlorophyll (HNLC) conditions of the Southern Ocean were explored with an ecological model (SWAMCO) describing the cycling of C, N, P, Si and Fe through different, aggregated, chemical and biological compartments of the plankton ecosystem. The structure of the model was chosen to take explicitly into account biological processes of importance in the formation and mineralization of carbon biomass in surface waters and in carbon export production. State variables include major inorganic nutrients (NO3, NH4, PO4, Si(OH)4), dissolved Fe, two groups of phytoplankton (diatoms and nanoflagellates), bacteria, heterotrophic nanoflagellates, microzooplankton, labile DOC and two classes of dissolved and particulate organic polymers with specific biodegradability. The model is closed by export production of particulate organic matter out of the surface layer and, when relevant, by metazooplanton, the grazing pressure of which is described as a forcing function. Parameterization was derived from the current knowledge on the kinetics of biological processes in the Southern Ocean and in other `HNLC’ areas. For its application in the Atlantic sector in spring 1992, the SWAMCO model was coupled `off-line’ to a 1D physical model forced by in situ meteorological and sea-ice conditions. The predictions of the model were successfully compared with chemical and biological observations recorded in the Antarctic circumpolar current (ACC) during the 1992 cruise ANTX/6 of RV Polarstern. In particular, the model simulates quite well the diatom bloom and carbon export event observed in the iron-enriched Polar Frontal region and the lack of ice-edge phytoplankton blooms in the marginal zone (MIZ) of the ACC area. Model analysis shows that sufficient light and iron concentrations above 0.5 μmol m−3 are the necessary conditions for enhancing diatom blooms and particulate carbon export production in the Southern Ocean. Low iron availability prevents diatom growth but is still adequate for nanophytoplankton, the biomass of which is, however, kept to Chl a levels less than 1 mg m−3 due to the loss by the ubiquitous micrograzers. Little carbon export is predicted under iron-limitation conditions. Sensitivity tests conducted on the parameters describing iron and silicon uptake by diatoms reveal the complex nature of Fe and Si limitation in regulating the magnitude and extent of diatom blooms and carbon and opal export production in the Southern Ocean.


Biogeosciences | 2009

Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study

Christiane Lancelot; Anne de Montety; Hugues Goosse; Sylvie Becquevort; Véronique Schoemann; Bénédicte Pasquer; Martin Vancoppenolle

An upgraded version of the biogeochemical model SWAMCO is coupled to the ocean-sea-ice model NEMOLIM to explore processes governing the spatial distribution of the iron supply to phytoplankton in the Southern Ocean. The 3-D NEMO-LIM-SWAMCO model is implemented in the ocean domain south of latitude 30 ◦ S and runs are performed over September 1989–December 2000. Model scenarios include potential iron sources (atmospheric deposition, iceberg calving/melting and continental sediments) as well as iron storage within sea ice, all formulated based on a literature review. When all these processes are included, the simulated iron profiles and phytoplankton bloom distributions show satisfactory agreement with observations. Analyses of simulations and sensitivity tests point to the key role played by continental sediments as a primary source for iron. Iceberg calving and melting contribute by up to 25% of Chl-a simulated in areas influenced by icebergs while atmospheric deposition has little effect at high latitudes. Activating sea ice-ocean iron exchanges redistribute iron geographically. Stored in the ice during winter formation, iron is then transported due to ice motion and is released and made available to phytoplankton during summer melt, in the vicinity of the marginal ice zones. Transient iron storage and transport associated with sea ice dynamics stimulate summer phytoplankton blooming (up to 3 mg Chla m−3) in the Weddell Sea and off East Antarctica but not in the Ross, Bellingshausen and Amundsen Seas. This contrasted feature results from the simulated variable content of iron in sea ice and release of melting ice showing higher ice-ocean iron fluxes in the continental shelves of the Weddell and Ross Seas than in the Eastern Weddell Sea and the Bellingshausen-Amundsen Correspondence to: C. Lancelot ([email protected]) Seas. This study confirms that iron sources and transport in the Southern Ocean likely provide important mechanisms in the geographical development of phytoplankton blooms and associated ecosystems.


Journal of Sea Research | 2000

Trophic efficiency of the planktonic food web in a coastal ecosystem dominated by Phaeocystis colonies

Véronique Rousseau; Sylvie Becquevort; Jean-Yves Parent; Stéphane Gasparini; Marie Hermande Daro; Micky L. M. Tackx; Christiane Lancelot

Abstract The trophic efficiency of the planktonic food web in the Phaeocystis-dominated ecosystem of the Belgian coastal waters was inferred from the analysis of the carbon flow network of the planktonic system subdivided into its different trophodynamic groups. A carbon budget was constructed on the basis of process-level field experiments conducted during the spring bloom period of 1998. Biomass and major metabolic activities of auto- and heterotrophic planktonic communities (primary production, bacterial production, nanoproto-, micro- and mesozooplankton feeding activities) were determined in nine field assemblages collected during spring at reference station 330. In 1998, the phytoplankton spring flowering was characterised by a moderate diatom bloom followed by a massive Phaeocystis colony bloom. Phaeocystis colonies, contributing 70% to the net primary production, escaped the linear food chain while the early spring diatom production supplied 74% of the mesozooplankton carbon uptake. The rest of mesozooplankton food requirement was, at the time of the Phaeocystis colony bloom, partially fulfilled by microzooplankton. Only one-third of the microzooplankton production, however, was controlled by mesozooplankton grazing pressure. Ungrazed Phaeocystis colonies were stimulating the establishment of a very active microbial network. On the one hand, the release of free-living cells from ungrazed colonies has been shown to stimulate the growth of microzooplankton, which was controlling 97% of the nanophytoplankton production. On the other hand, the disruption of ungrazed Phaeocystis colonies supplied the water column with large amounts of dissolved organic matter available for planktonic bacteria. The budget calculation suggests that ungrazed colonies contributed up to 60% to the bacterial carbon demand, while alternative sources (exudation, zooplankton egestion and lysis of other organisms) provided some 30% of bacterial carbon requirements. This suggests that the spring carbon demand of planktonic bacteria was satisfied largely by autogenic production. The trophic efficiency was defined as the ratio between mesozooplankton grazing on a given source and food production. In spite of its major contribution to mesozooplankton feeding, the trophic efficiency of the linear food chain, restricted to the grazing on diatoms, represented only 5.6% of the available net primary production. The trophic efficiency of the microbial food chain, the ratio between mesozooplankton grazing on microzooplankton and the resource inflow (the bacterial carbon demand plus the nanophytoplankton production) amounted to only 1.6%. These low trophic efficiencies together with the potential contribution of ungrazed Phaeocystis-derived production to the bacterial carbon demand suggest that during spring 1998 most of the Phaeocystis-derived production in the Belgian coastal area was remineralised in the water column.


Deep-sea Research Part Ii-topical Studies in Oceanography | 1997

Nanoprotozooplankton in the Atlantic sector of the Southern ocean during early spring: biomass and feeding activities

Sylvie Becquevort

Abstract The dynamic of early spring nanoprotozoa was investigated in three characteristic water masses of the Southern Ocean: the Marginal Ice Zone, the intermediate waters of the Antarctic Circumpolar Current and the Polar Frontal Zone. Biomass and feeding activities of nanoprotozoa were measured, as well as the biomass of their potential prey—bacteria and phototrophic flagellates-on the 6°W meridian in the Southern Ocean along three repetitive transects between 47 and 60° South from October to November 1992. On average, nanoprotozooplankton biomass accounted for 77% of the combined biomass of bacteria and phototrophic flagellates, and was dominated by dinoflagellates and flagellates smaller than 5 ,μm. As a general trend, low protozoan biomass of 2 mg C m−3 was typical of the ice covered area, while significantly higher biomasses culminating at 15 mg C m−3 were recorded at the Polar Front. Biomasses of bacteria and total phytoplankton were distributed accordingly, with larger values at the Polar Front. Phototrophic flagellates did not show any geographical trend. No seasonal trend could be identified in the Marginal Ice Zone and in the intermediate waters of the Antarctic Circumpolar Current. On the other hand, at the Polar Front region a three-fold increase was observed within a 2-month period for nanoprotozooplankton biomass. Such a biomass increase was also detected for bacterioplankton and total phytoplankton biomass. Half-saturation constants and maximum specific ingestion of nanoprotozoan taxons feeding on bacteria and phototrophic flagellates were determined using the technique of fluorescent labelled bacteria (FLB) and algae (FLA) over a large range of prey concentrations. Maximum ingestion rates ranged between 0.002 and 0.015 h−1 for bactivorous nanoprotozoa and heterotrophic flagellates larger than 5 μm feeding on phototrophic flagellates. The markedly high maximum ingestion rates of 0.4 h−1 characterising nanophytoplankton ingestion by dinoflagellates evidenced the strong ability of dinoflagellates for feeding on nanophytoplankton. Daily ingestion rates were calculated from nanoprotozoan grazing parameters and carbon biomass of prey and predators. This indicated that nanoprotozoa ingestion of daily bacterioplankton and phytoplankton production in early spring ranged from 32 to 40%.


Marine Chemistry | 1991

Modelling carbon cycling through phytoplankton and microbes in the Scotia-Weddell Sea area during sea ice retreat

Christiane Lancelot; Gilles Billen; Cornelis Veth; Sylvie Becquevort; Sylvie Mathot

An ecological model to calculate phytoplankton development and microbial loop dynamics in the marginal ice zone of the antarctic ecosystem has been established on the basis of physical and biological (phyto- and bacterioplankton biomass and activity and counting of two classes of heterotrophic nanoplankton) measurements carried out in the marginal ice zone of the Scotia-Weddell Sea sector of the Southern Ocean during sea ice retreat 1988 (EPOS 1 and 2 expeditions). Application of this model at latitudes where sea ice retreat occurs and in adjacent open sea and permanently ice-covered areas demonstrated that the marginal ice zone is a region of enhanced primary and bacterioplankton production. Combining the results of the phyto- and bacterioplankton models allowed the quantitative estimate of the carbon fluxes through the lower level of the planktonic food web of the Weddell Sea marginal ice zone during the sea ice retreat period. The resulting carbon budget revealed the quantitative importance of microbial and micrograzing processes in the pathways of net primary production, 71% of this latter being assimilated in the microbial food web. However, total net microbial food web secondary production contributed 28% of‘marginal ice zone produced’ food resources available to krill and other Zooplankton.


Polar Biology | 1992

Interactions in the microbial community of the marginal ice zone of the northwestern Weddell Sea through size distribution analysis

Sylvie Becquevort; Sylvie Mathot; Christiane Lancelot

SummaryEnumeration and identification of planktonic microorganisms (phytoplankton, bacteria, protozoa) were carried out for 16 stations sampled in the marginal ice zone of the northwestern Weddell Sea during sea-ice retreat in 1988 (EPOS Leg 2). From these data, carbon biomass distribution among various classes, chosen according to size and trophic mode, has been determined. This analysis reveals the general dominance of nano-phytoplankton (74 %), mainly Cryptomonas sp.. In two stations only, significant microphytoplanktonic biomass occurred. Bacterioplankton biomass was 16 % of the phytoplanktonic biomass. Protozooplankton appeared as a significant group whose biomass represented an average of 23 % of the total microbial biomass. Maximum phytoplankton and protozooplankton biomass was reached at about 100–150 km north of the receding ice edge whilst bacteria did not show marked spatial variations. From these results, indirect evidence for close relationships between protozoa and bacteria, as well as protozoa and autotrophs, is given. The size range of autotrophic prey and predators overlaps (equivalent spherical diameter range = 6 to 11 μm). This size overlapping increases the complexity of the trophic organization of the microbial community. Our results thus support the idea of a flux of energy not always oriented towards an increasing particle size range. Potential ingestion rate, calculated from a mean clearance rate in the literature, indicated that protozooplankton might ingest as high as 48 % of the daily phytoplankton production in the marginal ice zone.


Journal of Geophysical Research | 2014

Southern Ocean CO2 sink: The contribution of the sea ice

Bruno Delille; Martin Vancoppenolle; Nicolas-Xavier Geilfus; B. Tilbrook; Delphine Lannuzel; Véronique Schoemann; Sylvie Becquevort; Gauthier Carnat; D. Delille; Christiane Lancelot; Lei Chou; Gerhard Dieckmann; Jean-Louis Tison

We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large oversaturation, relative to the atmosphere, to a marked undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first estimates of spring and summer CO2 uptake from the atmosphere by Antarctic sea ice. Over the spring-summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean.


Polar Biology | 2000

Differences of the protozoan biomass and grazing during spring and summer in the Indian sector of the Southern Ocean

Sylvie Becquevort; Patricia Menon; Christiane Lancelot

Abstract The dynamics of protozoa were investigated during two cruises in the Indian sector of the Southern Ocean: the early spring ANTARES 3 cruise (28 September to 8 November 1995) and the late summer ANTARES 2 cruise (6 February to 8 March 1994). Biomass and feeding activity of protozoa were measured as well as the biomass of their potential prey – bacteria and phototrophic flagellates – along the 62°E meridian. The sampling grid extended from the Polar Frontal region to the Coastal and Continental Shelf Zone in late summer and to the ice edge in spring, crossing the Antarctic Divergence. Protozoan biomass, although low in absolute terms, contributed 30% and 20% to the total microbial biomass (bacteria, phytoplankton and protozoa) in early spring and late summer, respectively. Nanoprotozoa dominated the total protozoan biomass. The geographical and seasonal distribution of protozoan biomass was correlated with that of phototrophic flagellates. However, bacterial and phototrophic flagellate biomass were inversely correlated. Phototrophic flagellates dominated in the Sea Ice Zone whereas bacteria were predominant at the end of summer in the Polar Frontal region and Coastal and Continental Shelf Zone. Furthermore, bacteria were the most important component of the microbial community (57% of the total microbial biomass) in late summer. Phototrophic flagellates were ingested by both nano-and microprotozoa. In contrast, bacteria were only ingested by nanoprotozoa. Protozoa controlled up to 90% of the daily bacterial production over the period examined. The spring daily protozoan ingestion controlled more than 100% of daily phototrophic flagellate production. This control was less strong at the end of summer when protozoan grazing controlled 42% of the daily phototrophic flagellate production.


Antarctic Science | 2008

Impact of the B-15 iceberg “stranding event” on the physical and biological properties of sea ice in McMurdo Sound, Ross Sea, Antarctica

Jean-Philippe Remy; Sylvie Becquevort; Timothy G. Haskell; Jean-Louis Tison

Abstract Ice cores were sampled at four stations in McMurdo Sound (Ross Sea) between 1999 and 2003. At the beginning of year 2000, a very large iceberg (B-15) detached itself from the Ross Ice Shelf and stranded at the entrance of the Sound, preventing the usual oceanic circulation purging of the annual sea ice cover from this area. Ice textural studies showed that a second year sea ice cover was built-up at three out of the four stations: ice thickness increased to about 3 m. Repeated alternation of columnar and platelet ice appeared, and bulk salinity showed a strong decrease, principally in the upper part of the ice sheet, with associated brine volume decrease. Physical modification influenced the biology as well. By decreasing the light and space available for organisms in the sea ice cover, the stranding of B-15 has i) hampered autotrophic productivity, with chlorophyll a concentration and algae biomass significantly lower for second year ice stations, and ii) affected trophic relationships such as the bacterial biomass/chl a concentration correlation, or the autotrophic to heterotrophic ratio.

Collaboration


Dive into the Sylvie Becquevort's collaboration.

Top Co-Authors

Avatar

Christiane Lancelot

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Véronique Schoemann

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Jean-Louis Tison

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Chou

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Servais

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Isabelle Dumont

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Véronique Rousseau

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Gilles Billen

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge