Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Begin-Colin is active.

Publication


Featured researches published by Sylvie Begin-Colin.


Dalton Transactions | 2012

Transformations in oxides induced by high-energy ball-milling

Vladimir Šepelák; Sylvie Begin-Colin; Gérard Le Caër

This paper, by no means exhaustive, focuses on high-energy ball-milling of oxides, on their mechanically induced changes and on the consequences of such changes on their physical and chemical properties. High-energy ball-milling offers a fortunate combination of technical simplicity and of complexity both of physical mechanisms which act during milling and of mechanosynthesized materials. Its basic interest, which stems from the large diversity of routes it offers to prepare oxides either directly or indirectly, is illustrated with various families of oxides. The direct path is to be favoured when as-milled oxides are of interest per se because of their nanocrystalline characteristics, their defects or their modified structures which result from mechanically driven phase transformations. The indirect path consists of a sequence of steps starting with mechanically activated oxides which may be subsequently just annealed or submitted to a combination of thermal treatments, with the possible occurrence of various chemical reactions, to prepare the sought-after materials with potential gains in processing temperatures and times. High energy ball-milling of oxides is more and more currently used to activate powders and to prepare nano-oxides at moderate temperatures. The interest of an activation step is well illustrated by the broad development of doped titania powders, synthesized by heat treatment of pre-ground reactants, for photocatalytic applications or to develop antibacterial materials. Another important class of applications of high-energy ball-milling is the formation of composites. It is exemplified here with the case of oxide-dispersed strengthened alloys whose properties are considerably improved by a dispersion of ultra-stable nanosized oxides whose formation mechanisms were recently described. The basic understanding of the mechanisms by which oxides or oxide mixtures evolve by high-energy ball-milling appears to be less advanced than it is for metallic materials essentially because of the overall complexity of the oxide structures, of their surfaces, of their defects and of their mechanical behavior.


Biomaterials | 2011

Dendronized iron oxide nanoparticles for multimodal imaging

Giuseppe Lamanna; Marie Kueny-Stotz; Hind Mamlouk-Chaouachi; Cynthia Ghobril; Brice Basly; Annabelle Bertin; Imen Miladi; Claire Billotey; Geneviève Pourroy; Sylvie Begin-Colin; Delphine Felder-Flesch

The synthesis of small-size dendrons and their grafting at the surface of iron oxide nanoparticles were achieved with the double objective to obtain a good colloidal stability with a mean hydrodynamic diameter smaller than 100 nm and to ensure the possibility of tuning the organic coating characteristics including morphology, functionalities, physico-chemical properties, grafting of fluorescent or targeting molecules. Magnetic resonance and fluorescence imaging are then demonstrated to be simultaneously possible using such versatile superparamagnetic iron oxide nanocrystals covered by a dendritic shell displaying either carboxylate or ammonium groups at their periphery which could be further labelled with a fluorescent dye. The grafting conditions of these functionalized dendrons at the surface of SPIO NPs synthesized by co-precipitation have been optimized as a function of the nature of the peripheral functional group. The colloidal stability has been investigated in water and osmolar media, and in vitro and in vivo MRI and optical imaging measurements have been performed showing encouraging biodistribution.


ACS Nano | 2015

Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway

Walid Dachraoui; Cécilia Ménard-Moyon; Xiao Jie Liu; Dominique Begin; Sylvie Begin-Colin; Alberto Bianco; Florence Gazeau; Damien Alloyeau

Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs.


ACS Nano | 2014

Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

Iris Marangon; Georgian Melinte; Claire Wilhelm; Cécilia Ménard-Moyon; Benoit P. Pichon; Ovidiu Ersen; Kelly Aubertin; Walid Baaziz; Cuong Pham-Huu; Sylvie Begin-Colin; Alberto Bianco; Florence Gazeau; Dominique Begin

Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.


Small | 2010

Nematic-like Organization of Magnetic Mesogen- Hybridized Nanoparticles

Arnaud Demortière; Saïwan Buathong; Benoı̂t P. Pichon; P. Panissod; Daniel Guillon; Sylvie Begin-Colin; Bertrand Donnio

A fluid nematic-like phase is induced in monodisperse iron oxide nanoparticles with a diameter of 3.3 nm. This supramolecular arrangement is governed by the covalent functionalization of the nanoparticle surface with cyanobiphenyl-based ligands as mesogenic promoters. The design and synthesis of these hybrid materials and the study of their mesogenic properties are reported. In addition, the modifications of the magnetic properties of the hybridized nanoparticles are investigated as a function of the different grafted ligands. Owing to the rather large interparticular distances (about 7 nm), the dipolar interaction between nanoparticles is shown to play only a minor role. Conversely, the surface magnetic anisotropy of the particles is significantly affected by the surface derivatization.


Contrast Media & Molecular Imaging | 2011

Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications

Brice Basly; Delphine Felder-Flesch; Pascal Perriat; Geneviève Pourroy; Sylvie Begin-Colin

Functionalized iron oxide nanoparticles have attracted an increasing interest in the last 10 years as contrast agents for MRI. One challenge is to obtain homogeneous and stable aqueous suspensions of iron oxide nanoparticles without aggregates. Iron oxide nanoparticles with sizes around 10 nm were synthesized by two methods: the particle size distribution in water suspension of iron oxide nanoparticles synthesized by the co-precipitation method was improved by a process involving two steps of ligand exchange and phase transfer and was compared with that of iron oxide nanoparticles synthesized by thermal decomposition and functionalized by the same dendritic molecule. The saturation magnetization of dendronized nanoparticles synthesized by thermal decomposition was lower than that of nanoparticles synthesized by co-precipitation. The r(2) relaxivity values were shown to decrease with the agglomeration state in suspension and high r(2) values and r(2) /r(1) ratios were obtained with nanoparticles synthesized by co-precipitation by comparison with those of commercial products. Dendronized iron oxide nanoparticles thus have potential properties as contrast agent.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

Cristina Blanco-Andujar; Aurélie Walter; Geoffrey Cotin; Catalina Bordeianu; Damien Mertz; Delphine Felder-Flesch; Sylvie Begin-Colin

Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools.


Nanoscale | 2013

Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders

Solenne Fleutot; Gareth L. Nealon; Matthias Pauly; Benoit P. Pichon; Cédric Leuvrey; Marc Drillon; Jean-Louis Gallani; Daniel Guillon; Bertrand Donnio; Sylvie Begin-Colin

Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature T(B) increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be described by using the Vogel Fulcher model.


Journal of Materials Chemistry | 2011

Monolayer and multilayer assemblies of spherically and cubic-shaped iron oxide nanoparticles

Matthias Pauly; Benoit P. Pichon; Pierre-Antoine Albouy; Solenne Fleutot; Cédric Leuvrey; Morgan Trassin; Jean-Louis Gallani; Sylvie Begin-Colin

Nowadays, nanoparticles are considered as the building blocks of the future nanotechnological devices and the development of strategies for processing nanoparticles into thin films has become a strategic challenge. In this context, the assembling of spherically shaped iron oxide nanoparticles displaying various sizes and of cubic-shaped nanoparticles has been investigated using the Langmuir–Blodgett technique. Homogeneous and dense monolayer and multilayer films have been obtained on large areas. The organisation in films has been studied by combining GISAXS and image analysis of SEM micrographs. The quality of the film has been determined to be mainly dependent on the chemical nature of the substrate and the amount of surfactant molecules at the surface of the nanoparticles (i.e. the organic coating).


Dalton Transactions | 2013

Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents

Brice Basly; Gabriela Popa; Solenne Fleutot; Benoit P. Pichon; Antonio Garofalo; Cynthia Ghobril; Claire Billotey; Aurélie Berniard; Pauline Bonazza; Hervé Martinez; Delphine Felder-Flesch; Sylvie Begin-Colin

Aqueous suspensions of dendronized iron oxide nanoparticles (NPs) have been obtained after functionalization, with two types of dendrons, of NPs synthesized either by coprecipitation (leading to naked NPs in water) or by thermal decomposition (NPs in situ coated by oleic acid in an organic solvent). Different grafting strategies have been optimized depending on the NPs synthetic method. The size distribution, the colloidal stability in isoosmolar media, the surface complex nature as well as the preliminary biokinetic studies performed with optical imaging, and the contrast enhancement properties evaluated through in vitro and in vivo MRI experiments, have been compared as a function of the nature of both dendrons and NPs. All functionalized NPs displayed good colloidal stability in water, however the ones bearing a peripheral carboxylic acid function gave the best results in isoosmolar media. Whereas the grafting rates were similar, the nature of the surface complex depended on the NPs synthetic method. The in vitro contrast enhancement properties were better than commercial products, with a better performance of the NPs synthesized by coprecipitation. On the other hand, the NPs synthesized by thermal decomposition were more efficient in vivo. Furthermore, they both displayed good biodistribution with renal and hepatobiliary elimination pathways and no consistent RES uptake.

Collaboration


Dive into the Sylvie Begin-Colin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walid Baaziz

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Greneche

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Matthias Pauly

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ovidiu Ersen

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge