Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Chalon is active.

Publication


Featured researches published by Sylvie Chalon.


Journal of Neurochemistry | 2002

α‐Linolenic Acid Dietary Deficiency Alters Age‐Related Changes of Dopaminergic and Serotoninergic Neurotransmission in the Rat Frontal Cortex

Sylvie Delion; Sylvie Chalon; Denis Guilloteau; Jean-Claude Besnard; Georges Durand

Abstract: The effects of α‐linolenic acid diet deficiency on rat dopaminergic and serotoninergic neurotransmission systems were investigated in the frontal cortex, striatum, and cerebellum of male rats 2, 6, 12, and 24 months of age. The diet deficiency induced a severe decrease in the 22:6n‐3 fatty acid levels in all regions and a compensatory increase in n‐6 fatty acid levels. A recovery in the levels of 22:6n‐3 was observed in deficient rats between 2 and 12 months of age; however, this recovery was lower in frontal cortex than in striatum and cerebellum. In the striatum and the cerebellum, dopaminergic and serotoninergic receptor densities and endogenous dopamine and serotonin levels were affected by aging regardless of the diet. In contrast, a 40–75% lower level of endogenous dopamine in the frontal cortex occurred in deficient rats according to age. The deficiency also induced an 18–46% increase in serotonin 5‐HT2 receptor density in the frontal cortex during aging, without variation in endogenous serotonin level, and a 10% reduction in density of dopaminergic D2 receptors. Monoamine oxidase‐A and ‐B activities showed specific age‐related variations but regardless of the diet. Our results suggest that a chronically α‐linolenic‐deficient diet specifically affects the monoaminergic systems in the frontal cortex.


Lipids | 2001

Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission

Sylvie Chalon; Sylvie Vancassel; Luc Zimmer; Denis Guilloteau; Georges Durand

More and more reports in recent years have shown that the intake of polyunsaturated fatty acids (PUFA) constitutes an environmental factor able to act on the central nervous system (CNS) function. We recently demonstrated that the effects of PUFA on behavior can be mediated through effects on the monoaminergic neurotransmission processes. Supporting this proposal, we showed that chronic dietary deficiency in α-linolenic acid in rats induces abnormalities in several parameters of the mesocortical and mesolimbic dopaminergic systems. In both systems, the pool of dopamine stored in presynaptic vesicles is strongly decreased. This may be due to a decrease in the number of vesicles. In addition, several other factors of dopaminergic neurotransmission are modified according to the system affected. The mesocortical system seems to be hypofunctional overall [e.g., decreased basal release of dopamine (DA) and reduced levels of dopamine D2 (DAD2) receptors]. In contrast, the mesolimbic system seems to be hyperfunctional overall (e.g., increased basal release of DA and increased levels of DAD2 receptors). These neurochemical changes are in agreement with modifications of behavior already described with this deficiency. The precise mechanisms explaining the effects of PUFA on neurotransmission remain to be clarified. For example, modifications of physical properties of the neuronal membrane, effects on proteins (receptors, transporters) enclosed in the membrane, and effects on gene expression and/or transcription might occur. Whatever the mechanism, it is therefore assumed that interactions exist among PUFA, neurotransmission, and behavior. This might be related to clinical findings. Indeed, deficits in the peripheral amounts of PUFA have been described in subjects suffering from neurological and psychiatric disorders. Involvement of the monoaminergic neurotransmission function has been demonstrated or hypothesized in several of these diseases. It can therefore be proposed that functional links exist among PUFA status, neurotransmission processes, and behavioural disorders in humans. Animal models are tools of choice for the understanding of such links. Improved prevention and complementary treatment of neurological and psychiatric diseases can be expected from these studies.


Neuroscience Letters | 2000

Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex

Luc Zimmer; Delpal S; Denis Guilloteau; Aïoun J; Georges Durand; Sylvie Chalon

We studied the effects of a chronic deficiency in n-3 polyunsaturated fatty acids (n-3 PUFA) on the vesicle dopaminergic compartment in the frontal cortex of rats. Electronic micrographic analysis showed that the synaptic density and the clear vesicle density were similar in deficient and control rats. However, dopaminergic immunolabeling revealed a significantly decreased number of gold-labeled vesicles in the dopaminergic presynaptic terminals of the deficient rats. These findings demonstrate that dopamine cortical vesicles are specifically decreased in n-3 PUFA deficiency. The mechanism leading to this modification could involve several abnormalities (vesicle turn-over, membrane fluidity, vesicular monoamine transporter). This reduction in the dopaminergic vesicle pool constitutes the first structural support for the previously described modifications of dopamine metabolism in the frontal cortex. Such changes in dopamine neurotransmission could be involved in behavioral abnormalities occurring in n-3 PUFA deficient rats.


Neurochemistry International | 2008

Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease

Gaëlle Bouchez; Luc Sensebé; Patrick Vourc'h; Lucette Garreau; Sylvie Bodard; Angélique Rico; Denis Guilloteau; Pierre Charbord; Jean-Claude Besnard; Sylvie Chalon

Cellular therapy with adult stem cells appears as an opportunity for treatment of Parkinsons disease. To validate this approach, we studied the effects of transplantation of rat adult bone-marrow mesenchymal stem cells in a rat model of Parkinsons disease. Animals were unilaterally lesioned in the striatum with 6-hydroxydopamine. Two weeks later, group I did not undergo grafting, group II underwent sham grafting, group III was intra-striatal grafted with cells cultured in an enriched medium and group IV was intra-striatal grafted with cells cultured in a standard medium. Rotational amphetamine-induced behavior was measured weekly until animals were killed 6 weeks later. One week after graft, the number of rotations/min was stably decreased by 50% in groups III and IV as compared with groups I and II. At 8 weeks post-lesion, the density of dopaminergic markers in the nerve terminals and cell bodies, i.e. immunoreactive tyrosine hydroxylase, membrane dopamine transporter and vesicular monoamine transporter-2 was significantly higher in group III as compared with group I. Moreover, using microdialysis studies, we observed that while the rate of pharmacologically induced release of dopamine was significantly reduced in lesioned versus intact striatum in no grafted rats, it was similar in both sides in animals transplanted with mesemchymal stem cells. These data demonstrate that graft of adult mesemchymal stem cells reduces behavioral effects induced by 6-hydroxydopamine lesion and partially restores the dopaminergic markers and vesicular striatal pool of dopamine. This cellular approach might be a restorative therapy in Parkinsons disease.


Neuroscience Letters | 1998

Chronic n-3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study

Luc Zimmer; S Hembert; Georges Durand; P Breton; Denis Guilloteau; Jean-Claude Besnard; Sylvie Chalon

The effects of alpha-linolenic acid diet deficiency on rat dopaminergic metabolism were investigated in the frontal cortex of male 2-3 month-old rats using the microdialysis method. Increased basal levels of dopamine metabolites were observed in the frontal cortex of awake deficient rats, without modification of dopamine levels. Moreover, using KCl perfusion which releases newly synthesized dopamine, no difference was observed in anaesthetized deficient rats versus control rats. In addition, a decrease in dopamine release was observed in anaesthetized deficient rats versus control rats after tyramine stimulation, which is known to induce release of dopamine from vesicular stores. A working model is proposed which suggests that a chronic n-3 polyunsaturated fatty acids (PUFA) deficiency may lead to modifications in the internalization of dopamine in the storage pool in the frontal cortex.


Behavioural Brain Research | 2012

Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation?

Rai Khalid Farooq; Elsa Isingrini; Arnaud Tanti; Anne-Marie Le Guisquet; Nicolas Arlicot; Frederic Minier; Samuel Leman; Sylvie Chalon; Catherine Belzung; Vincent Camus

Unipolar depression is one of the leading causes of disability. The pathophysiology of depression is poorly understood. Evidence suggests that inflammation is associated with depression. For instance, pro-inflammatory cytokines are found to be elevated in the peripheral blood of depressed subjects. Cytokine immunotherapy itself is known to induce depressive symptoms. While the epidemiological and biochemical relationship between inflammation and depression is strong, little is known about the possible existence of neuroinflammation in depression. The use of animal models of depression such as the Unpredictable Chronic Mild Stress (UCMS) has already contributed to the elucidation of the pathophysiological mechanisms of depression such as decreased neurogenesis and HPA axis alterations. We used this model to explore the association of depressive-like behavior in mice with changes in peripheral pro-inflammatory cytokines IL-1β, TNFα and IL-6 level as well as the neuroinflammation by quantifying CD11b expression in brain areas known to be involved in the pathophysiology of depression. These areas include the cerebral cortex, the nucleus accumbens, the bed nucleus of the stria terminalis, the caudate putamen, the amygdala and the hippocampus. The results indicate that microglial activation is significantly increased in the infralimbic, cingulate and medial orbital cortices, nucleus accumbens, caudate putamen, amygdala and hippocampus of the mouse brain as a function of UCMS, while levels of pro-inflammatory cytokines did not differ among the groups. This finding suggests that neuroinflammation occurs in depression and may be implicated in the subjects behavioral response. They also suggest that UCMS could be a potentially reliable model to study depression-induced neuroinflammation.


Neuroscience | 2003

MOTOR BEHAVIOUR DEFICITS AND THEIR HISTOPATHOLOGICAL AND FUNCTIONAL CORRELATES IN THE NIGROSTRIATAL SYSTEM OF DOPAMINE TRANSPORTER KNOCKOUT MICE

Pierre O. Fernagut; Sylvie Chalon; Elsa Diguet; Denis Guilloteau; François Tison; Mohamed Jaber

Chronic dysregulation of dopamine homeostasis has been shown to induce behavioural impairment in dopamine transporter knockout mutant mice arising from the dysfunction of the mesolimbic and hypothalamo-infundibular system. Here, we assessed whether there are also any motor consequences of a chronic and constitutive hyperdopaminergia in the nigrostriatal system in dopamine transporter knockout mutant mice. For this, we analysed motor performances using tests assessing balance, coordinated motor skills (rotarod, pole test), stride lengths and locomotor activity. Dopamine transporter knockout mutant mice were markedly hyperactive in the open field with central compartment avoidance, as previously shown. However, sensorimotor integration was also found to be altered in dopamine transporter knockout mutant mice which displayed a reduced fore- and hind-limb mean stride length, impaired motor coordination on the pole test and reduced rearings in the open field. Moreover, dopamine transporter knockout mutant mice showed a slower task acquisition on the rotarod. Six-week-old dopamine transporter knockout wild type mice having the same femur size as adult dopamine transporter knockout mutant mice ruled out a possible size-effect bias. Whilst there was no significant difference in the striatal volume, we found a slight but significant reduction in neuronal density in the striatum but not in the nucleus accumbens of dopamine transporter knockout mutant mice. There was a reduced binding in the striatum and nucleus accumbens of dopamine(1) receptors ([(3)H]SCH 23390) and dopamine(2) receptors ([(3)H]YM-09151-2). There was no significant difference in the number of dopaminergic neurons in the substantia nigra between dopamine transporter knockout mutant mice and dopamine transporter knockout wild type mice. These results suggest an impaired functioning of the nigrostriatal system in dopamine transporter knockout mutant hyperdopaminergic mice, as illustrated by motor and sensorimotor integration deficits, despite their apparent hyperactivity. These dysfunctions may arise from combined striatal cell loss and/or functional changes of dopaminergic neurotransmission.


Experimental Neurology | 2004

Ropinirole versus L-DOPA effects on striatal opioid peptide precursors in a rodent model of Parkinson's disease: implications for dyskinesia.

Paula Ravenscroft; Sylvie Chalon; Jonathan M. Brotchie; A.R. Crossman

The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), remains the most common treatment for Parkinsons disease. However, following long-term treatment, disabling side effects, particularly L-DOPA-induced dyskinesias, are encountered. Conversely, D2/D3 dopamine receptor agonists, such as ropinirole, exert an anti-parkinsonian effect while eliciting less dyskinesia when administered de novo in Parkinsons disease patients. Parkinsons disease and L-DOPA-induced dyskinesia are both associated with changes in mRNA and peptide levels of the opioid peptide precursors preproenkephalin-A (PPE-A) and preproenkephalin-B (PPE-B). Furthermore, a potential role of abnormal opioid peptide transmission in dyskinesia is suggested due to the ability of opioid receptor antagonists to reduce the L-DOPA-induced dyskinesia in animal models of Parkinsons disease. In this study, the behavioural response, striatal topography and levels of expression of the opioid peptide precursors PPE-A and PPE-B were assessed, following repeated vehicle, ropinirole, or L-DOPA administration in the 6-OHDA-lesioned rat model of Parkinsons disease. While repeated administration of L-DOPA significantly elevated PPE-B mRNA levels (313% cf. vehicle, 6-OHDA-lesioned rostral striatum; 189% cf. vehicle, 6-OHDA-lesioned caudal striatum) in the unilaterally 6-OHDA-lesioned rat model of Parkinsons disease, ropinirole did not. These data and previous studies suggest the involvement of enhanced opioid transmission in L-DOPA-induced dyskinesia and that part of the reason why D2/D3 dopamine receptor agonists have a reduced propensity to elicit dyskinesia may reside in their reduced ability to elevate opioid transmission.


Molecular Neurobiology | 2003

Time-course of nigrostriatal degeneration in a progressive MPTP-lesioned macaque model of Parkinson's disease.

Wassilios G. Meissner; Caroline Prunier; Denis Guilloteau; Sylvie Chalon; Christian E. Gross; Erwan Bezard

Parkinson’s disease (PD) is characterized by a progressive loss of substantia nigra pars compacta (SNc) neurons. The onset of clinical symptoms only occurs after the degeneration has exceeded a certain threshold. In most of the current 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) nonhuman primate models, nigrostriatal lesions and the onset of PD symptoms are the result of an immediate neuronal degeneration in the SNc caused by acute injection of the toxin. In order to develop a model that more closely mimics the degeneration pattern of human PD, we eventually established a protocol that produces a progressive parkinsonian state by treating monkeys repeatedly with MPTP for 15 ± 2 d. Mean onset of parkinsonian symptoms occurred after 13.2 d of treatment. At this time, 56.8 ± 6.3% of tyrosine hydroxylase immunoreactive neurons and 75.2 ± 6.2% of Nissl-stained cells remained in the SNc. Striatal dopamine transporter (DAT) binding and dopamine (DA) content decreased to 19.7 ± 4.9% and 18.2 ± 5.6% of untreated monkeys. Parallel 123I-PEI single-photon emission computed tomography (SPECT) imaging in living animals showed a similar decrease in striatal DAT binding. In this article, we examine how this and other chronic MPTP models fit with human pathology.


Lipids | 1998

Chronic dietary n-3 polyunsaturated fatty acids deficiency affects the fatty acid composition of plasmenylethanolamine and phosphatidylethanolamine differently in rat frontal cortex, striatum, and cerebellum

S. Favrelière; L. Barrier; Georges Durand; Sylvie Chalon; C. Tallineau

As chronic consumption of a diet devoid of n-3 fatty acid induced modification of neurotransmission pathways in the frontal cortex of rats, plasmalogen alteration could occur in this area. Because of the propensity to facilitate membrane fusion, plasmenylethanolamine (PmE), a major plasmalogen of brain, may be involved in synaptic transmission. Female rats were fed diet containing peanut oil [(n-3)-deficient diet] through two generations. Two weeks before mating, half of the female rats of the second generation received a diet containing peanut oil and rapeseed oil (control group). The distribution and acyl composition of major phospholipids, phosphatidylethanolamine and PmE, were measured in the frontal cortex, striatum, and cerebellum of the male progeny of the two groups at 60 d of age. The n-3 polyunsaturated fatty acid (PUFA) deficiency had no effect on the distribution of phospholipids in all brain regions but affected their acyl composition differently. The level of 22∶6n-3 was significantly lower and compensated for by higher levels of n-6 fatty acids in all regions and phospholipids studied. However, docosahexaenoic acid, being more concentrated in the PmE of frontal cortex, is also more decreased in the n-3-deficient rats compared to the striatum. By contrast, striatum PmE has retained more 22∶6n-3 than PmE of the other regions. In addition, the increase of n-6 PUFA was significantly lower in frontal cortex PmE compared to the striatum and cerebellum PmE. In association with altered neurotransmission observed in frontal cortex of n-3-deficient rats, our results suggest that frontal cortex PmE might be more affected in chronically α-linolenic-deficient rats. However, by retaining 22∶6n-3, striatum PmE could be most resilient.

Collaboration


Dive into the Sylvie Chalon's collaboration.

Top Co-Authors

Avatar

Denis Guilloteau

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Patrick Emond

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Lucette Garreau

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Sylvie Bodard

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Georges Durand

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Johnny Vercouillie

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Sylvie Mavel

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Belzung

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Elie Saliba

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge