Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Changotade is active.

Publication


Featured researches published by Sylvie Changotade.


Journal of Histochemistry and Cytochemistry | 2014

Picrosirius Red Staining A Useful Tool to Appraise Collagen Networks in Normal and Pathological Tissues

Raed Lattouf; Ronald Younes; Didier Lutomski; Nada Naaman; Gaston Godeau; Karim Senni; Sylvie Changotade

Specific staining of the extracellular matrix components is especially helpful in studying tissue remodeling, particularly in the case of connective tissue pathologies. As developed by Junqueira and colleagues in 1979, specific staining by Picrosirius red is one of the most important stains to study collagen networks in different tissues. Under polarized light, collagen bundles appear green, red or yellow, and are easily differentiated from the black background, thus allowing for quantitative morphometric analysis. As Junqueira and colleagues point out, many studies use color staining to differentiate collagen bundles and to specify collagen types, yet other studies report that polarized colors only reflect fiber thickness and packing. Using a simple histological example, our study illustrates the inability of Picrosirius red staining to differentiate collagen types, since the absorbed amount of polarized light by this dye strictly depends on the orientation of the collagen bundles.


Journal of Oral Implantology | 2013

Clinical, histological, and histomorphometrical analysis of maxillary sinus augmentation using inorganic bovine in humans: preliminary results.

Joseph Bassil; Nada Naaman; Raed Lattouf; Cynthia Kassis; Sylvie Changotade; Brigitte Baroukh; Karim Senni; Gaston Godeau

The aim of the present study was to evaluate bone formation after maxillary sinus augmentation using bovine bone substitute material Bio-Oss alone by means of clinical, histological, and histomorphometrical examination of human biopsies. Deproteinized bovine bone (DPBB, Bio-Oss) was used to fill cavities after elevation of the sinus mucosa following major sinus pneumatization. Twenty patients with edentulous posterior maxillae were treated with 20 sinus augmentation procedures using a 2-stage technique. Residual lateral maxillary bone height was less than 3 mm. Forty-nine Straumann endosseous implants were used to complete the implant-prosthetic rehabilitation. Forty cylinder-shaped bone biopsies were taken from the augmented maxillary region 8 months after grafting during the second-stage surgery before implant placement. All implants were loaded 3 months after insertion, and no failures were recorded. Histomorphometrical analysis showed an average percentage of newly formed bone of 17.6% (± 2.8%) and a proportion of residual bone substitute material of 29.9% (± 4.9%) of the total biopsy area. Intimate contact between newly formed bone and Bio-Oss was detected along 28.2% (± 6.8%) of the particle surfaces. The results also showed that in all cases, the DPBB granules had been interconnected by bridges of vital newly formed bone. Inorganic bovine bone appears to be biocompatible and osteoconductive, and it can be used with success as a bone substitute in maxillary sinus augmentation procedures.


Journal of Chromatography B | 2011

Development of proteomic tools to study protein adsorption on a biomaterial, titanium grafted with poly(sodium styrene sulfonate)

S. Oughlis; S. Lessim; Sylvie Changotade; F. Bollotte; Florence Poirier; G. Helary; Jean-Jacques Lataillade; Véronique Migonney; Didier Lutomski

It is known that protein adsorption is the initial interaction between implanted biomaterials and biological environment. Generally, a complex protein layer will be formed on material surfaces within a few minutes and the composition of this layer at the interface determines the biological response to the implanted material, and therefore the long-term compatibility of the biomaterial. Despite different techniques exist to observe protein adsorption on biomaterials, none of them led to the identification of adsorbed proteins. In this paper, we report a chromatographic technique coupled to proteomics to analyse and identify proteins from complex biological samples adsorbed on biomaterial surfaces. This approach is based on (1) elaboration of the chromatographic support containing the biomaterial (2) a chromatography step involving adsorption of proteins on the biomaterial (3) the high-resolution separation of eluted proteins by 2-DE gel and (4) the identification of proteins by mass spectrometry. Experiments were performed with proteins from platelets rich plasma (PRP) adsorbed on a biomaterial which consist in titanium bioactivated with PolyNaSS. Our results show that chromatographic approach combined to 2-DE gels and mass spectrometry provides a powerful tool for the analysis and identification of proteins adsorbed on various surfaces.


Marine Drugs | 2013

Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues.

Karim Senni; Farida Gueniche; Sylvie Changotade; Dominique Septier; Corinne Sinquin; Jacqueline Ratiskol; Didier Lutomski; Gaston Godeau; Jean Guezennec; Sylvia Colliec-Jouault

Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.


Journal of Biomedical Materials Research Part A | 2013

The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer.

S. Oughlis; S. Lessim; Sylvie Changotade; Florence Poirier; F. Bollotte; Juliette Peltzer; Helena P. Felgueiras; Véronique Migonney; Jean-Jacques Lataillade; Didier Lutomski

Osseointegration of metallic implants used in orthopedic surgery requires that osteoprogenitor cells attach and adhere to the surface, then proliferate, differentiate into osteoblasts, and finally produce mineralized matrix. Because the ability of progenitor cells to attach to a scaffold surface during early stages is important in the development of new tissue structures, we developed in our laboratory, a strategy involving grafting of implants with a polymer of sodium styrene sulfonate (polyNaSS) used as a scaffold which enables human mesenchymal stem cells (hMSCs) interactions. In the present study, we investigated the cellular response of hMSCs to polyNaSS surfaces of titanium (Ti). In particular, cell proliferation, cell viability, cell differentiation, and cell spreading were evaluated. Results showed that cell proliferation and cell viability did not differ with any statistical significance between modified and unmodified Ti surfaces. Interestingly, culture of MSCs on polyNaSS surfaces resulted in a significant increase of cell spreading and cell differentiation compared with the other tested surfaces. These results suggest that titanium surface grafted with polyNaSS is a suitable scaffold for bone tissue engineering.


Journal of Biomedical Materials Research Part B | 2015

Biotribocorrosion (tribo-electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture

Helena P. Felgueiras; L. Castanheira; Sylvie Changotade; Florence Poirier; S. Oughlis; Mariana Henriques; C. Chakar; Nada Naaman; Ronald Younes; Véronique Migonney; Jean-Pierre Celis; Pierre Ponthiaux; Luís A. Rocha; Didier Lutomski

The purpose of this study was to investigate the relationship between the osteoblastic cells behavior and biotribocorrosion phenomena on bioactive titanium (Ti). Ti substrates submitted to bioactive anodic oxidation and etching treatments were cultured up to 28 days with MG63 osteoblast-like cells. Important parameters of in vitro bone-like tissue formation were assessed. Although no major differences were observed between the surfaces topography (both rough) and wettability (both hydrophobic), a significant increase in cell attachment and differentiation was detected on the anodized substrates as product of favorable surface morphology and chemical composition. Alkaline phosphatase production has increased (≈20 nmol/min/mg of protein) on the anodized materials, while phosphate concentration has reached the double of the etched material and calcium production increased (over 20 µg/mL). The mechanical and biological stability of the anodic surfaces were also put to test through biotribocorrosion sliding solicitations, putting in evidence the resistance of the anodic layer and the cells capacity of regeneration after implant degradation. The Ti osteointegration abilities were also confirmed by the development of strong cell-biomaterial bonds at the interface, on both substrates. By combining the biological and mechanical results, the anodized Ti can be considered a viable option for dentistry.


Journal of Periodontal Research | 2011

Expression of MMP-2, 9 and 13 in newly formed bone after sinus augmentation using inorganic bovine bone in human

J. Bassil; K. Senni; Sylvie Changotade; B. Baroukh; C. Kassis; Nada Naaman; Gaston Godeau

BACKGROUND AND OBJECTIVE The aim of the present study was to analyse the expression of MMP-2, MMP-9 and MMP-13 in newly formed bone following maxillary sinus augmentation using inorganic bovine bone substitute, because these MMPs play a major role in bone remodeling and bone resorption. MATERIAL AND METHODS Deproteinized bovine bone (Bio-Oss(®)) was used to fill cavities after elevating the sinus mucosa. Twenty patients with edentulous posterior maxilla were treated with 20 sinus-augmentation procedures using a two-stage technique. Forty-nine Straumann(®) endosseous implants were used to complete the implant-prosthetic rehabilitation. One cylinder-shaped bone biopsy from each patient was taken from the augmented maxillary region using trephine burs at the second stage of surgery, 8 months after grafting. A biopsy was also taken as a control from the upper molar region from six different patients who did not undergo the sinus procedure. All biopsies were subjected to biochemical analysis and staining for TRAP. RESULTS No implant losses or failures occurred. The large number of TRAP-positive multinucleated osteoclasts in resorption lacunae indicated that the resorption was very active in all grafts, in contrast with the control group. Zymography and western blot analysis demonstrated a significantly increased expression of MMP-2, MMP-9 and MMP-13 in the newly formed bone compared with controls (p < 0.05). CONCLUSION The quantity of osteoclastic cells and the increased expression of proteolytic enzymes suggest that 8 months after grafting, inorganic bovine bone is slowly resorbing and is the site of important remodeling of the newly formed bone by means of resorption and synthesis.


Bio-medical Materials and Engineering | 2013

PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro.

Soucounda Lessim; Véronique Migonney; Patricia Thoreux; Didier Lutomski; Sylvie Changotade

BACKGROUND Introduction of a new generation of artificial ligaments for ACL reconstruction, the Ligament Augmentation and Reconstruction System (LARS), gives promising clinical results [1]. The current literature supports the use of LARS from short to medium term. To go even further to improve the biocompatibility of this biomaterial, poly(sodium styrene sulfonate) (polyNaSS) was grafted onto its surface. Studies using sheep animal model showed improvement of knee functionalities with this grafted artificial ligament and a better adhesion of human cell lines. OBJECTIVES To better understand this in vivo improvement of integration with the bioactivated artificial prosthesis, in vitro studies were leaded using human ligament fibroblasts. METHODS Human ligament fibroblasts isolated from human ruptured ACL were amplified and seeded onto poly(NaSS) grafted and non-grafted PET scaffold (Lars ligament) under standard culture conditions. Cellularized fibers were observed under scanning electron microscopy and histological and immunohistological studies were performed. RESULTS Cells are localized around the grafted PET fibers of the bioactive ligament and penetrate in the scaffold. On ungrafted fibers, cells stay around the scaffold. On grafted fibers, collagen I appears strongly organized whereas is thin and dispersed on non grafted fibers. Finally, grafting altered localization of decorin. CONCLUSIONS PolyNaSS grafting enhances human ligament fibroblast organisation in vitro in contact with biomaterial and improves collagen and decorin deposits around fibers.


Stem Cells International | 2015

Preliminary In Vitro Assessment of Stem Cell Compatibility with Cross-Linked Poly(ε-caprolactone urethane) Scaffolds Designed through High Internal Phase Emulsions

Sylvie Changotade; Gabriela Radu Bostan; Anne Consalus; Florence Poirier; Juliette Peltzer; Jean-Jacques Lataillade; Didier Lutomski; Géraldine Rohman

By using a high internal phase emulsion process, elastomeric poly(ε-caprolactone urethane) (PCLU) scaffolds were designed with pores size ranging from below 150 μm to 1800 μm and a porosity of 86% making them suitable for bone tissue engineering applications. Moreover, the pores appeared to be excellently interconnected, promoting cellularization and future bone ingrowth. This study evaluated the in vitro cytotoxicity of the PCLU scaffolds towards human mesenchymal stem cells (hMSCs) through the evaluation of cell viability and metabolic activity during extract test and indirect contact test at the beginning of the scaffold lifetime. Both tests demonstrated that PCLU scaffolds did not induce any cytotoxic response. Finally, direct interaction of hMSCs and PCLU scaffolds showed that PCLU scaffolds were suitable for supporting the hMSCs adhesion and that the cells were well spread over the pore walls. We conclude that PCLU scaffolds may be a good candidate for bone tissue regeneration applications using hMSCs.


Biomedical Materials | 2015

Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly(sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins

S. Lessim; S. Oughlis; Jean-Jacques Lataillade; Véronique Migonney; Sylvie Changotade; Didier Lutomski; Florence Poirier

Immediately after surgical placement of biomaterials, a first step consists in the adsorption of proteins from the biological environment on the artificial surfaces. Because the composition of the adsorbed protein layer modulates the cell response to the implanted material, researchers in the biomaterials field have focused on coating proteins or peptides onto surfaces to improve cell response and therefore the long-term compatibility of the implant. However, some materials used in tissue engineering, mainly synthetic polymers, are too hydrophobic to allow the optimal adsorption of proteins and have to be first submitted to physical or chemical treatments. In our laboratory, we have demonstrated that grafting of poly(sodium styrene sulfonate) (polyNaSS) onto biomaterials can strongly modulate the protein adsorption and the cellular response compared to unmodified surfaces. In this study, we used a liquid chromatography strategy coupled to proteomics to evaluate the adsorptive properties of a polyethylene terephtalate (PET) artificial ligament grafted with polyNaSS, and to identify and analyse proteins adsorbed on PET fibers. Results obtained with platelet rich plasma (PRP) proteins demonstrated that grafting significantly increases the protein adsorption of the PET and also selectively modulates the adsorption of proteins on PET fibers. Finally, regarding physicochemical parameters calculated from the amino acid sequence of identified proteins, we found that the aliphatic index is highly correlated with the selective adsorption of proteins onto the polyNaSS/PET surface. Therefore, the proteomic approach complemented with physicochemical property evaluation could provide a powerful tool for the elaboration of new biomaterials based on protein layer deposition.

Collaboration


Dive into the Sylvie Changotade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nada Naaman

Saint Joseph's University

View shared research outputs
Top Co-Authors

Avatar

Karim Senni

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raed Lattouf

Saint Joseph's University

View shared research outputs
Researchain Logo
Decentralizing Knowledge