Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Gobert is active.

Publication


Featured researches published by Sylvie Gobert.


Marine Pollution Bulletin | 1999

Heavy Metals, Organochlorines and Polycyclic Aromatic Hydrocarbons in Sperm Whales Stranded in the Southern North Sea During the 1994/1995 Winter

Ludo Holsbeek; Claude R. Joiris; Virginie Debacker; I.B. Ali; Patrick Roose; Jean-Pierre Nellissen; Sylvie Gobert; Jean-Marie Bouquegneau; M. Bossicart

Seven male sperm whales stranded on the southern North Sea coast during the 1994/95 winter were analysed for stable pollutant concentrations in muscle, liver, kidney and blubber: heavy metals (total and organic Hg, Se, Zn, Pb, Ni, Cd, Fe, Cr, Cu and Ti), organochlorines (PCBs and pesticides) and polycyclic aromatic hydrocarbons (PAHs). High concentrations of Cd (up to 300 μg/g dw in kidney), Hg (up to 130 μg/g dw in liver) and PCBs (up to 5 μg/g dw in blubber) were detected, but not considered as the direct cause of mortality, while their possible indirect influence on the health status and/or behaviour of the North Atlantic sperm whale population is discussed.


Marine Biology Research | 2006

Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter

Gilles Lepoint; Anne-Sophie Cox; Patrick Dauby; Mathieu Poulicek; Sylvie Gobert

Abstract This study focused on the ingestion and assimilation of Posidonia oceanica (L.) Delile litter by Gammarella fucicola Leach and Gammarus aequicauda Martynov, two dominant detritivore amphipods of the P. oceanica leaf litter. Scanning electron microscope observations indicated that leaf litter is highly colonized by diverse diatoms, bacteria and fungi, which may constitute a potential food source for the litter fauna. Gut content observations demonstrated that these species eat P. oceanica litter, and that this item is an important part of their ingested diet. Stable isotope analyses showed that the species do not experience the same gains from the ingested Posidonia. Gammarella fucicola displayed isotopic values, suggesting a major contribution of algal material (micro- and macro-epiphytes or drift macro-algae). On the other hand, the observed isotopic values of G. aequicauda indicated a more important contribution of P. oceanica carbon. The mixing model used agreed with this view, with a mean contribution of P. oceanica to approximately 50% (range 40–55%) of the assimilated biomass of G. aequicauda. This demonstrated that the two species, suspected to be detritus feeders, display in reality relatively different diets, showing that a certain degree of trophic diversity may exist among the detritivore community of the seagrass litter.


Hydrobiologia | 1999

Fauna vs flora contribution to the leaf epiphytes biomass in a Posidonia oceanica seagrass bed (Revellata Bay, Corsica).

Gilles Lepoint; Stéphane Havelange; Sylvie Gobert; Jean-Marie Bouquegneau

The epiphyte biomass of Posidonia oceanica (L.) Delile leaves is mainly related to the substrate leaf availability. It decreases with increasing depth and increases from winter to summer, following the leaf biomass changes. In Revellata Bay (Gulf of Calvi, Corsica), at shallow depth (10 m in this study) where photophilous algae grow, the fixed epifauna biomass accounts for about one third of leaf epiphytes biomass. At deeper depths in the Revellata Bay (20 and 30 m), where shade-tolerant algae are dominant among epiflora, epifauna may account for more than half the leaf epiphytes biomass.


Plant Cell and Environment | 2014

Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L

Isabelle S. Lefèvre; Katarina Vogel-Mikuš; Luka Jeromel; Primož Vavpetič; Sébastien Planchon; Iztok Arčon; Johannes T. van Elteren; Gilles Lepoint; Sylvie Gobert; Jenny Renaut; Primož Pelicon; Stanley Lutts

Cadmium and zinc share many similar physiochemical properties, but their compartmentation, complexation and impact on other mineral element distribution in plant tissues may drastically differ. In this study, we address the impact of 10 μm Cd or 50 μm Zn treatments on ion distribution in leaves of a metallicolous population of the non-hyperaccumulating species Zygophyllum fabago at tissue and cell level, and the consequences on the plant response through a combined physiological, proteomic and metabolite approach. Micro-proton-induced X-ray emission and laser ablation inductively coupled mass spectrometry analyses indicated hot spots of Cd concentrations in the vicinity of vascular bundles in response to Cd treatment, essentially bound to S-containing compounds as revealed by extended X-ray absorption fine structure and non-protein thiol compounds analyses. A preferential accumulation of Zn occurred in vascular bundle and spongy mesophyll in response to Zn treatment, and was mainly bound to O/N-ligands. Leaf proteomics and physiological status evidenced a protection of photosynthetically active tissues and the maintenance of cell turgor through specific distribution and complexation of toxic ions, reallocation of some essential elements, synthesis of proteins involved in photosynthetic apparatus or C-metabolism, and metabolite synthesis with some specificities regarding the considered heavy metal treatment.


Frontiers in Plant Science | 2013

Establishing research strategies, methodologies and technologies to link genomics and proteomics to seagrass productivity, community metabolism, and ecosystem carbon fluxes

Silvia Mazzuca; Mats Björk; Sven Beer; Paulo Felisberto; Sylvie Gobert; Gabriele Procaccini; John W. Runcie; João Silva; Alberto Borges; C Brunet; Pimchanok Buapet; Willy Champenois; Monya M. Costa; D D'esposito; Martin Gullström; Pierre Lejeune; Gilles Lepoint; Irene Olivé; Lina M. Rasmusson; Jonathan Richir; Miriam Ruocco; Ilia Anna Serra; Antonia Spadafora; Rui Santos

A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the European Cooperation in Science and Technology (COST) Action ES0609 “Seagrasses productivity. From genes to ecosystem management,” is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems. During 10 days, 20 researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, and underwater acoustics) gathered at The Station de Recherches Sous-marines et Océanographiques (STARESO, Corsica) to study together the nearby Posidonia oceanica meadow. STARESO is located in an oligotrophic area classified as “pristine site” where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, which grows in front of the research station, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general.


Ecological Modelling | 2003

A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean)

Khalid Elkalay; Constantin Frangoulis; Nikolaos Skliris; Anne Goffart; Sylvie Gobert; Gilles Lepoint; Jean-Henri Hecq

Modelling of seagrasses can be an effective tool to assess factors regulating their growth. Growth and production model of Posidonia oceanica, the dominant submerged aquatic macrophyte occurring in the Bay of Calvi (Corsica, Ligurian Sea, Northwestern (NW) Mediterranean) was developed. The state variables are the above- and below-ground biomass of P. oceanica, the epiphyte biomass, and the internal nitrogen concentration of the whole plant. Light intensity and water temperature are the forcing variables. The model reproduces successfully seasonal growth and production for each variable at various depths (10, 20 and 30 m). The model can simulate also a number of consecutive years. Sensitivity analysis of model’s parameters showed that the maximum nitrogen quota nmax rate is the most sensitive parameter in this model. The results simulations imply that light intensity is one of the most important abiotic factors, the diminution of which can cause an important reduction in seagrass density.


Journal of Sea Research | 2002

Experimental evidence for N recycling in the leaves of the seagrass Posidonia oceanica

Gilles Lepoint; Olivier Defawe; Sylvie Gobert; Patrick Dauby; Jean-Marie Bouquegneau

Abstract A one-year in situ experiment using 15 N as a tracer was designed to assess the N recycling in the leaves of the seagrass Posidonia oceanica (L.) Delile. P. oceanica was shown to partly recycle the internal nitrogen pool of its leaves in order to contribute to new leaf growth. The leaves sampled in June 1999 contained 20% of the quantity of 15 N found in June 1998. N recycling caused a difference between N and biomass turnover rate (0.8 vs 1.3 y −1 ) of Posidonia leaves. This 40% difference should correspond to the contribution of recycled N to the annual N requirement of Posidonia leaves. The N recycling appears to be insufficient to significantly reduce the quantitative impact of N loss due to autumnal leaf fall. However, new leaf growth between June and October is mainly sustained by this recycling because the tracer concentration in new leaves was the same as in the other leaves. By contrast, tracer concentration decreased drastically between October 1998 and June 1999, showing the more important contribution of N uptake during winter and spring. Nevertheless, recycling occurs throughout the year as demonstrated by the presence of tracer in the youngest leaves of shoots sampled one year after the tracer addition.


Journal of Phycology | 2007

FIELD MEASUREMENTS OF INORGANIC NITROGEN UPTAKE BY EPIFLORA COMPONENTS OF THE SEAGRASS POSIDONIA OCEANICA (MONOCOTYLEDONS, POSIDONIACEAE)1

Gilles Lepoint; Julien Jacquemart; Jean-Marie Bouquegneau; Vincent Demoulin; Sylvie Gobert

Crustose corallines, crustose and erect brown algae, and sessile animals are major components of the epiphytic community of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Production, biomass, and specific composition of this epiphyte–seagrass association are impacted by anthropogenic increase of nutrient load in this oligotrophic area. In this context, nitrogen uptake by P. oceanica and its epiflora was measured using the isotope 15N at a 10 m depth in the Revellata Bay (Corsica, Mediterranean Sea). Epiflora components showed various seasonal patterns of biomass and abundance. The epiphytic brown algae appeared at the end of spring, later than the crustose corallines, and after the nitrate peak in the bay. Because of their later development in the season, epiphytic brown algae mostly rely on ammonium for their N needs. We hypothesize that the temporal succession of epiphytic organisms plays a crucial role in the N dynamics of this community under natural conditions. The epiphytic brown algae, which have a growth rate one order of magnitude greater than that of crustose corallines, showed lower N‐uptake rates. The greater N‐uptake rates of crustose corallines probably reflect the greater N requirements (i.e., lower C/N ratios) of red algae. We determined that the epiflora incorporated ammonium and nitrate more rapidly than their host. Nevertheless, when biomass was taken into account, P. oceanica was the most important contributor to N uptake from the water column by benthic macrophytes in this seagrass bed.


Marine Pollution Bulletin | 2014

A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal pollution of trace elements: New tools and tips

Jonathan Richir; Sylvie Gobert

The present study gives a summary using state-of-the-art technology to monitor Posidonia oceanica and Mytilus galloprovincialis as bioindicators of the pollution of the Mediterranean littoral with trace elements (TEs), and discusses their complementarity and specificities in terms of TE bioaccumulation. Furthermore, this study presents two complementary indices, the Trace Element Spatial Variation Index (TESVI) and the Trace Element Pollution Index (TEPI): these indices were shown to be relevant monitoring tools since they led to the ordering of TEs according to the overall spatial variability of their environmental levels (TESVI) and to the relevant comparison of the global TE pollution between monitored sites (TEPI). In addition, this study also discusses some underestimated aspects of P. oceanica and M. galloprovincialis bioaccumulation behaviour, with regard to their life style and ecophysiology. It finally points out the necessity of developing consensual protocols between monitoring surveys in order to publish reliable and comparable results.


Aquatic Toxicology | 2013

Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements

Jonathan Richir; Nicolas Luy; Gilles Lepoint; Eric Rozet; Aïda Alvera Azcarate; Sylvie Gobert

The Mediterranean seagrass Posidonia oceanica (L.) Delile has been used for trace element (TE) biomonitoring since decades ago. However, present informations for this bioindicator are limited mainly to plant TE levels, while virtually nothing is known about their fluxes through P. oceanica meadows. We therefore contaminated seagrass bed portions in situ at two experimental TE levels with a mix of 15 TEs (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Pb and Bi) to study their uptake and loss kinetics in P. oceanica. Shoots immediately accumulated pollutants from the beginning of exposures. Once contaminations ended, TE concentrations came back to their original levels within two weeks, or at least showed a clear decrease. P. oceanica leaves exhibited different uptake kinetics depending on elements and leaf age: the younger growing leaves forming new tissues incorporated TEs more rapidly than the older senescent leaves. Leaf epiphytes also exhibited a net uptake of most TEs, partly similar to that of P. oceanica shoots. The principal route of TE uptake was through the water column, as no contamination of superficial sediments was observed. However, rhizomes indirectly accumulated many TEs during the overall experiments through leaf to rhizome translocation processes. This study thus experimentally confirmed that P. oceanica shoots are undoubtedly an excellent short-term bioindicator and that long-term accumulations could be recorded in P. oceanica rhizomes.

Collaboration


Dive into the Sylvie Gobert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge