Sylvie Robbe-Dubois
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvie Robbe-Dubois.
Astronomy and Astrophysics | 2007
Romain G. Petrov; F. Malbet; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; M. Dugué; G. Duvert; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; F. Millour; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; Piero Salinari; E. Tatulli; G. Zins; M. Accardo; B. Acke; K. Agabi; E. Altariba; B. Arezki; E. Aristidi
Context: Optical long-baseline interferometry is moving a crucial step forward with the advent of general-user scientific instruments that equip large aperture and hectometric baseline facilities, such as the Very Large Telescope Interferometer (VLTI). Aims: AMBER is one of the VLTI instruments that combines up to three beams with low, moderate and high spectral resolutions in order to provide milli-arcsecond spatial resolution for compact astrophysical sources in the near-infrared wavelength domain. Its main specifications are based on three key programs on young stellar objects, active galactic nuclei central regions, masses, and spectra of hot extra-solar planets. Methods: These key science goals led to scientific specifications, which were used to propose and then validate the instrument concept. AMBER uses single-mode fibers to filter the entrance signal and to reach highly accurate, multiaxial three-beam combination, yielding three baselines and a closure phase, three spectral dispersive elements, and specific self-calibration procedures. Results: The AMBER measurements yield spectrally dispersed calibrated visibilities, color-differential complex visibilities, and a closure phase allows astronomers to contemplate rudimentary imaging and highly accurate visibility and phase differential measurements. AMBER was installed in 2004 at the Paranal Observatory. We describe here the present implementation of the instrument in the configuration with which the astronomical community can access it. Conclusions: .After two years of commissioning tests and preliminary observations, AMBER has produced its first refereed publications, allowing assessment of its scientific potential.
Astronomy and Astrophysics | 2007
E. Tatulli; F. Millour; A. Chelli; G. Duvert; B. Acke; O. Hernandez Utrera; Karl-Heinz Hofmann; Stefan Kraus; Fabien Malbet; P. Mège; Romain G. Petrov; Martin Vannier; G. Zins; P. Antonelli; Udo Beckmann; Y. Bresson; M. Dugué; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; G. Weigelt; M. Accardo
Aims. In this paper, we present an innovative data reduction method for single-mode interferometry. It has been specifically developed for the AMBER instrument, the three-beam combiner of the Very Large Telescope Interferometer, but it can be derived for any single-mode interferometer. Methods. The algorithm is based on a direct modelling of the fringes in the detector plane. As such, it requires a preliminary calibration of the instrument in order to obtain the calibration matrix that builds the linear relationship between the interferogram and the interferometric observable, which is the complex visibility. Once the calibration procedure has been performed, the signal processing appears to be a classical least-square determination of a linear inverse problem. From the estimated complex visibility, we derive the squared visibility, the closure phase, and the spectral differential phase. Results. The data reduction procedures have been gathered into the so-called amdlib software, now available for the community, and are presented in this paper. Furthermore, each step in this original algorithm is illustrated and discussed from various on-sky observations conducted with the VLTI, with a focus on the control of the data quality and the effective execution of the data reduction procedures. We point out the present limited performances of the instrument due to VLTI instrumental vibrations which are difficult to calibrate.
Nature | 2010
Stefan Kraus; Karl-Heinz Hofmann; K. M. Menten; D. Schertl; G. Weigelt; F. Wyrowski; Anthony Meilland; K. Perraut; Romain G. Petrov; Sylvie Robbe-Dubois; P. Schilke; Leonardo Testi
Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass (∼20 solar masses) young stellar object. The image shows an elongated structure with a size of ∼13 × 19 astronomical units, consistent with a disk seen at an inclination angle of ∼45°. Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.
Astronomy and Astrophysics | 2007
Fabien Malbet; M. Benisty; W. J. de Wit; S. Kraus; A. Meilland; F. Millour; E. Tatulli; J.-P. Berger; O. Chesneau; Karl-Heinz Hofmann; Andrea Isella; A. Natta; Romain G. Petrov; Thomas Preibisch; P. Stee; L. Testi; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; G. Duvert; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; Sylvie Robbe-Dubois; A. Roussel
The young stellar object MWC 297 is an embedded B1.5Ve star exhibiting strong hydrogen emission lines and a strong near-infrared continuum excess. This object has been observed with the VLT interferometer equipped with the AMBER instrument during its first commissioning run. VLTI/AMBER is currently the only near infrared interferometer which can observe spectrally dispersed visibilities. MWC 297 has been spatially resolved in the continuum with a visibility of
Astronomy and Astrophysics | 2007
E. Tatulli; Andrea Isella; A. Natta; L. Testi; A. Marconi; Fabien Malbet; P. Stee; Romain G. Petrov; F. Millour; A. Chelli; G. Duvert; P. Antonelli; Udo Beckmann; Y. Bresson; M. Dugué; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; G. Weigelt; G. Zins; M. Accardo; B. Acke
0.50^{+0.08}_{-0.10}
Astronomy and Astrophysics | 2007
F. Millour; Romain G. Petrov; O. Chesneau; D. Bonneau; Luc Dessart; Clémentine Béchet; Isabelle Tallon-Bosc; Michel Tallon; Éric Thiébaut; F. Vakili; Fabien Malbet; D. Mourard; G. Zins; A. Roussel; Sylvie Robbe-Dubois; P. Puget; K. Perraut; Franco Lisi; E. Le Coarer; S. Lagarde; P. Kern; L. Glück; G. Duvert; A. Chelli; Y. Bresson; Udo Beckmann; P. Antonelli; G. Weigelt; N. Ventura; Martin Vannier
as well as in the Brgamma emission line where the visibility decrease to a lower value of
Astronomical Telescopes and Instrumentation | 2003
Romain G. Petrov; Fabien Malbet; Gerd Weigelt; Franco Lisi; Pascal Puget; Pierre Antonelli; Udo Beckmann; Stephane Lagarde; Etienne LeCoarer; Sylvie Robbe-Dubois; Gilles Duvert; Sandro Gennari; Alain E. Chelli; Michel Dugue; Karine Rousselet-Perraut; Martin Vannier; D. Mourard
0.33\pm0.06
Astronomy and Astrophysics | 2005
O. Chesneau; A. Meilland; T. Rivinius; P. Stee; S. Jankov; A. Domiciano de Souza; U. Graser; T. M. Herbst; E. Janot-Pacheco; Ralf S. Koehler; Christoph Leinert; S. Morel; Francesco Paresce; A. Richichi; Sylvie Robbe-Dubois
. This change in the visibility with the wavelength can be interpreted by the presence of an optically thick disk responsible for the visibility in the continuum and of a stellar wind traced by the Brgamma emission line and whose apparent size is 40% larger. We validate this interpretation by building a model of the stellar environment that combines a geometrically thin, optically thick accretion disk model consisting of gas and dust, and a latitude-dependent stellar wind outflowing above the disk surface. The continuum emission and visibilities obtained from this model are fully consistent with the interferometric AMBER data. They agree also with existing optical, near-infrared spectra and other broad-band near-infrared interferometric visibilities. We also reproduce the shape of the visibilities in the Brgamma line as well as the profile of this line obtained at an higher spectral resolution with the VLT/ISAAC spectrograph, and those of the Halpha and Hbeta lines. The disk and wind models yield a consistent inclination of the system of approximately 20 degrees. A picture emerges in which MWC 297 is surrounded by an equatorial flat disk that is possibly still accreting and an outflowing wind which has a much higher velocity in the polar region than at the equator. The VLTI/AMBER unique capability to measure spectral visibilities therefore allows us for the first time to compare the apparent geometry of a wind with the disk structure in a young stellar system.
Astronomy and Astrophysics | 2008
E. Tatulli; Fabien Malbet; Francois Menard; C. Gil; L. Testi; A. Natta; Stefan Kraus; P. Stee; Sylvie Robbe-Dubois
This work has been partly supported by the MIUR COFIN grant 2003/027003-001 and 025227/2004 to the INAFOsservatorio Astrofisico di Arcetri. This project has benefited from funding from the French Centre National de la Recherche Scientifique (CNRS) through the Institut National des Sciences de l’Univers (INSU) and its Programmes Nationaux (ASHRA, PNPS). The authors from the French laboratories would like to thank the successive directors of the INSU/CNRS directors. C. Gil work was supported in part by the Fundac¸˜ao para a Ciˆencia e a Tecnologia through project POCTI/CTE-AST/55691/2004 from POCTI,with funds from the European program FEDER.
Astronomy and Astrophysics | 2013
Keiichi Ohnaka; Karl-Heinz Hofmann; D. Schertl; G. Weigelt; C. Baffa; Alain E. Chelli; Romain G. Petrov; Sylvie Robbe-Dubois
In this work, we present the first AMBER observations, of the Wolf-Rayet and O (WR+O) star binary system y² Velorum. The AMBER instrument was used with the telescopes UT2, UT3, and UT4 on baselines ranging from 46m to 85m. It delivered spectrally dispersed visibilities, as well as differential and closure phases, with a resolution R = 1500 in the spectral band 1.95-2.17 micron. We interpret these data in the context of a binary system with unresolved components, neglecting in a first approximation the wind-wind collision zone flux contribution. We show that the AMBER observables result primarily from the contribution of the individual components of the WR+O binary system. We discuss several interpretations of the residuals, and speculate on the detection of an additional continuum component, originating from the free-free emission associated with the wind-wind collision zone (WWCZ), and contributing at most to the observed K-band flux at the 5% level. The expected absolute separation and position angle at the time of observations were 5.1±0.9mas and 66±15° respectively. However, we infer a separation of 3.62+0.11-0.30 mas and a position angle of 73+9-11°. Our analysis thus implies that the binary system lies at a distance of 368+38-13 pc, in agreement with recent spectrophotometric estimates, but significantly larger than the Hipparcos value of 258+41-31 pc.