Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Syunichi Kawano is active.

Publication


Featured researches published by Syunichi Kawano.


Journal of Neurosurgery | 2010

Biomechanical study of the effect of degree of static compression of the spinal cord in ossification of the posterior longitudinal ligament.

Yoshihiko Kato; Tsukasa Kanchiku; Yasuaki Imajo; Kotaro Kimura; Kazuhiko Ichihara; Syunichi Kawano; Daisuke Hamanaka; Kentaro Yaji; Toshihiko Taguchi

OBJECT The authors evaluated the biomechanical effect of 3 different degrees of static compression in a model of the spinal cord in order to investigate the effect of cord compression in patients with ossification of the posterior longitudinal ligament (OPLL). METHODS A 3D finite element spinal cord model consisting of gray matter, white matter, and pia mater was established. As a simulation of OPLL-induced compression, a rigid plate compressed the anterior surface of the cord. The degrees of compression were 10, 20, and 40% of the anteroposterior (AP) diameter of the cord. The cord was supported from behind by the rigid body along its the posterior border, simulating the lamina. Stress distributions inside of the cord were evaluated. RESULTS The stresses on the cord were very low under 10% compression. At 20% compression, the stresses on the cord increased very slightly. At 40% compression, the stresses on the cord became much higher than with 20% compression, and high stress distributions were observed in gray matter and the lateral and posterior funiculus. The stresses on the compressed layers were much higher than those on the uncompressed layer. CONCLUSIONS The stress distributions at 10 and 20% compression of the AP diameter of the spinal cord were very low. The stress distribution at 40% compression was much higher. The authors conclude that a critical point may exist between 20 and 40% compression of the AP diameter of the cord such that when the degree of the compression exceeds this point, the stress distribution becomes much higher, and that this may contribute to myelopathy.


Journal of Spinal Cord Medicine | 2011

Biomechanical study of the spinal cord in thoracic ossification of the posterior longitudinal ligament.

Norihiro Nishida; Yoshihiko Kato; Yasuaki Imajo; Syunichi Kawano; Toshihiko Taguchi

Abstract Background Ossification of the posterior longitudinal ligament (OPLL) in the thoracic spine produces myelopathy. This is often progressive and is not affected by conservative treatment. Therefore, decompressive surgery is usually chosen. Objective To conduct a stress analysis of the thoracic OPLL. Methods The three-dimensional finite element spinal cord model was established. We used local ossification angle (LOA) for the degree of compression of spinal cord. LOA was the medial angle at the intersection between a line from the superior posterior margin at the cranial vertebral body of maximum OPLL to the top of OPLL with beak type, and a line from the lower posterior margin at the caudal vertebral body of the maximum OPLL to the top of OPLL with beak type. LOA 20°, LOA 25°, and LOA 30° compression was applied to the spinal cord in a preoperative model, the posterior decompressive model, and a model for the development of kyphosis. Results In a preoperative model, at more than LOA 20° compression, high stress distributions in the spinal cord were observed. In a posterior decompressive model, the stresses were lower than in the preoperative model. In the model for development of kyphosis, high-stress distributions were observed in the spinal cord at more than LOA 20° compression. Conclusions Posterior decompression was an effective operative method. However, when the preoperative LOA is more than 20°, it is very likely that symptoms will worsen. If operation is performed at greater than LOA 20°, then correction of kyphosis by fixation of instruments or by forward decompression should be considered.


Journal of Spinal Cord Medicine | 2009

Flexion Model Simulating Spinal Cord Injury Without Radiographic Abnormality in Patients With Ossification of the Longitudinal Ligament: The Influence of Flexion Speed on the Cervical Spine

Yoshihiko Kato; Tsukasa Kanchiku; Yasuaki Imajo; Kazuhiko Ichinara; Syunichi Kawano; Daiskue Hamanama; Kentaro Yaji; Toshihiko Taguchi

Abstract Background/Objective: It is suspected that the speed of the motion of the spinal cord under static compression may be the cause of spinal cord injury (SCI). However, little is known about the relationship between the speed of the motion of the spinal cord and its stress distributions. The objective was to carry out a biomechanical study of SCI in patients with ossification of the longitudinal ligament without radiologic evidence of injury. Methods: A 3-dimensional finite element spinal cord model was established. After the application of static compression, the model underwent anterior flexion to simulate SCI in ossification of the longitudinal ligament patients without radiologic abnormality. Flexion of the spine was assumed to occur at 1 motor segment. Flexion angle was 5°, and flexion speeds were 0.5°/s, 5°/s, and 50°/s. Stress distributions inside of the spinal cord were evaluated. Results: Stresses on the spinal cord increased slightly after the application of 5° of flexion at a speed of 0.5°/s. Stresses became much higher at a speed of 5°/s and increased further at 50°s. Conclusions: The stress distribution of the spinal cord under static compression increased with faster flexion speed of the spinal cord. High-speed motion of the spinal cord under static compression may be one of the causes of SCI in the absence of radiologic abnormality.


Journal of Spinal Cord Medicine | 2012

Biomechanical analysis of cervical spondylotic myelopathy: The influence of dynamic factors and morphometry of the spinal cord

Norihiro Nishida; Yoshihiko Kato; Yasuaki Imajo; Syunichi Kawano; Toshihiko Taguchi

Abstract Objective Patients with cervical spondylotic myelopathy (CSM) have the same clinical symptoms that vary according to the degree of spinal cord compression and the cross-sectional cord shape. We used a three-dimensional finite element method (3D-FEM) to analyze the stress distributions of the spinal cord with neck extension under three cross-sectional cord shapes. Methods Experimental condition for the 3D-FEM spinal cord, ligamentum flavum, and anterior compression shape (central, lateral, and diffuse types) was established. To simulate neck extension, the spinal cord was extended by 20° and the ligamentum flavum was shifted distally according to movement of the cephalad lamina. Results The stress distribution in the spinal cord increased due to invagination of the ligamentum flavum into the neck extension. The range of stress distribution observed for the diffuse type was wider than for the central and lateral types. In addition, the stress distribution in the spinal cord was increased by the pincer movement of the ligamentum flavum and by the anterior compression of the spinal cord. The range of stress distribution observed for the diffuse type under antero-posterior compression was also wider than for the central and lateral types. Conclusion This simulation model showed that the clinical symptoms of CSM due to compression of the diffuse type may be stronger than for the central and lateral types. Therefore, careful follow-up is recommended for anterior compression of the spinal cord of diffuse type.


Experimental and Therapeutic Medicine | 2014

Biomechanical analysis of cervical myelopathy due to ossification of the posterior longitudinal ligament: Effects of posterior decompression and kyphosis following decompression

Norihiro Nishida; Tsukasa Kanchiku; Yoshihiko Kato; Yasuaki Imajo; Yuichiro Yoshida; Syunichi Kawano; Toshihiko Taguchi

Cervical ossification of the posterior longitudinal ligament (OPLL) results in myelopathy. Conservative treatment is usually ineffective, thus, surgical treatment is required. One of the reasons for the poor surgical outcome following laminoplasty for cervical OPLL is kyphosis. In the present study, a 3-dimensional finite element method (3D-FEM) was used to analyze the stress distribution in preoperative, posterior decompression and kyphosis models of OPLL. The 3D-FEM spinal cord model established in this study consisted of gray and white matter, as well as pia mater. For the preoperative model, 30% anterior static compression was applied to OPLL. For the posterior decompression model, the lamina was shifted backwards and for the kyphosis model, the spinal cord was studied at 10, 20, 30, 40 and 50° kyphosis. In the preoperative model, high stress distributions were observed in the spinal cord. In the posterior decompression model, stresses were lower than those observed in the preoperative model. In the kyphosis model, an increase in the angle of kyphosis resulted in augmented stress on the spinal cord. Therefore, the results of the present study indicated that posterior decompression was effective, but stress distribution increased with the progression of kyphosis. In cases where kyphosis progresses following surgery, detailed follow-ups are required in case the symptoms worsen.


Journal of Spinal Cord Medicine | 2015

Cervical ossification of the posterior longitudinal ligament: Biomechanical analysis of the influence of static and dynamic factors

Norihiro Nishida; Tsukasa Kanchiku; Yoshihiko Kato; Yasuaki Imajo; Yuichiro Yoshida; Syunichi Kawano; Toshihiko Taguchi

Abstract Objective Cervical myelopathy due to ossification of the posterior longitudinal ligament (OPLL) is induced by static factors, dynamic factors, or a combination of both. We used a three-dimensional finite element method (3D-FEM) to analyze the stress distributions in the cervical spinal cord under static compression, dynamic compression, or a combination of both in the context of OPLL. Methods Experimental conditions were established for the 3D-FEM spinal cord, lamina, and hill-shaped OPLL. To simulate static compression of the spinal cord, anterior compression at 10, 20, and 30% of the anterior–posterior diameter of the spinal cord was applied by the OPLL. To simulate dynamic compression, the OPLL was rotated 5°, 10°, and 15° in the flexion direction. To simulate combined static and dynamic compression under 10 and 20% anterior static compression, the OPLL was rotated 5°, 10°, and 15° in the flexion direction. Results The stress distribution in the spinal cord increased following static and dynamic compression by cervical OPLL. However, the stress distribution did not increase throughout the entire spinal cord. For combined static and dynamic compression, the stress distribution increased as the static compression increased, even for a mild range of motion (ROM). Conclusion Symptoms may appear under static or dynamic compression only. However, under static compression, the stress distribution increases with the ROM of the responsible level and this makes it very likely that symptoms will worsen. We conclude that cervical OPLL myelopathy is induced by static factors, dynamic factors, and a combination of both.


Jsae Review | 2001

Benchmark problem for crush analysis of plastic parts for automotive

Masahiro Fujii; Syunichi Kawano; Hiroshi Fujino

To cut development time and cost of design process, demand for CAE is increasing. To develop computer simulation technique for crush analysis, JSAE set up a working group to select benchmark problems and perform simulation trials among members. Several tensile and compression tests are carried out to evaluate the effect of strain rate and temperature on mechanical properties of plastic material. Then, crush tests of a specimen (plate with ribs) made by rubber toughened polypropylene are carried out to prepare benchmark data. Through trials of computer simulation and comparison with benchmark data, several key parameters of crush simulation are found.


Experimental and Therapeutic Medicine | 2013

Biomechanical analysis of the spinal cord in Brown-Séquard syndrome

Norihiro Nishida; Tsukasa Kanchiku; Yoshihiko Kato; Yasuaki Imajo; Syunichi Kawano; Toshihiko Taguchi


Transactions of the Japan Society of Mechanical Engineers. A | 1999

Mechanical Property and Constitutive Equation of Ultra High Molecular Weight Polyethylene.

Itsuo Sakuramoto; Toyomitsu Tsuchida; Kouichi Kuramoto; Syunichi Kawano


Transactions of the Japan Society of Mechanical Engineers. A | 1997

An Experimental Consideration on Fracture Toughness of ABS Resin

Hiroshi Fujino; Syunichi Kawano; Masahiro Fujii

Collaboration


Dive into the Syunichi Kawano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge