Szilard Poliska
University of Debrecen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Szilard Poliska.
Immunity | 2010
Attila Szanto; Balint L. Balint; Zsuzsanna S. Nagy; Endre Barta; Balazs Dezso; Attila Pap; Lajos Széles; Szilard Poliska; Melinda Oros; Ronald M. Evans; Yaacov Barak; John W. R. Schwabe; Laszlo Nagy
Summary Peroxisome proliferator-activated receptor γ (PPARγ) is a lipid-activated transcription factor regulating lipid metabolism and inflammatory response in macrophages and dendritic cells (DCs). These immune cells exposed to distinct inflammatory milieu show cell type specification as a result of altered gene expression. We demonstrate here a mechanism how inflammatory molecules modulate PPARγ signaling in distinct subsets of cells. Proinflammatory molecules inhibited whereas interleukin-4 (IL-4) stimulated PPARγ activity in macrophages and DCs. Furthermore, IL-4 signaling augmented PPARγ activity through an interaction between PPARγ and signal transducer and activators of transcription 6 (STAT6) on promoters of PPARγ target genes, including FABP4. Thus, STAT6 acts as a facilitating factor for PPARγ by promoting DNA binding and consequently increasing the number of regulated genes and the magnitude of responses. This interaction, underpinning cell type-specific responses, represents a unique way of controlling nuclear receptor signaling by inflammatory molecules in immune cells.
Journal of Immunology | 2009
Lajos Széles; Gábor Keresztes; Dániel Töröcsik; Zoltán Balajthy; László Krenács; Szilard Poliska; Andreas Steinmeyer; Ulrich Zuegel; Monika Pruenster; Antal Rot; Laszlo Nagy
Activation of vitamin D receptor (VDR) by 1,25-dihydroxyvitamin D3 (1,25-vitD) reprograms dendritic cells (DC) to become tolerogenic. Previous studies suggested that 1,25-vitD could inhibit the changes brought about by differentiation and maturation of DCs. Underpinning the described phenotypic and functional alterations, there must be 1,25-vitD-coordinated transcriptional events. However, this transcriptional program has not been systematically investigated, particularly not in a developmental context. Hence, it has not been explored how 1,25-vitD-regulated genes, particularly the ones bringing about the tolerogenic phenotype, are connected to differentiation. We conducted global gene expression analysis followed by comprehensive quantitative PCR validation to clarify the interrelationship between 1,25-vitD and differentiation-driven gene expression patterns in developing human monocyte-derived and blood myeloid DCs. In this study we show that 1,25-vitD regulates a large set of genes that are not affected by differentiation. Interestingly, several genes, impacted both by the ligand and by differentiation, appear to be regulated by 1,25-vitD independently of the developmental context. We have also characterized the kinetics of generation of 1,25-vitD by using three early and robustly regulated genes, the chemokine CCL22, the inhibitory receptors CD300LF and CYP24A1. We found that monocyte-derived DCs are able to turn on 1,25-vitD sensitive genes in early phases of differentiation if the precursor is present. Our data collectively suggest that exogenous or endogenously generated 1,25-vitD regulates a large set of its targets autonomously and not via inhibition of differentiation and maturation, leading to the previously characterized tolerogenic state.
BMC Medical Genomics | 2010
Bertalan Mesko; Szilard Poliska; Andrea Szegedi; Zoltán Szekanecz; Károly Palatka; Mária Papp; Laszlo Nagy
BackgroundChronic inflammatory diseases including inflammatory bowel disease (IBD; Crohns disease and ulcerative colitis), psoriasis and rheumatoid arthritis (RA) afflict millions of people worldwide, but their pathogenesis is still not well understood.It is also not well known if distinct changes in gene expression characterize these diseases and if these patterns can discriminate between diseased and control patients and/or stratify the disease. The main focus of our work was the identification of novel markers that overlap among the 3 diseases or discriminate them from each other.MethodsDiseased (n = 13, n = 15 and n = 12 in IBD, psoriasis and RA respectively) and healthy patients (n = 18) were recruited based on strict inclusion and exclusion criteria; peripheral blood samples were collected by clinicians (30 ml) in Venous Blood Vacuum Collection Tubes containing EDTA and peripheral blood mononuclear cells were separated by Ficoll gradient centrifugation. RNA was extracted using Trizol reagent. Gene expression data was obtained using TaqMan Low Density Array (TLDA) containing 96 genes that were selected by an algorithm and the statistical analyses were performed in Prism by using non-parametric Mann-Whitney U test (P-values < 0.05).ResultsHere we show that using a panel of 96 disease associated genes and measuring mRNA expression levels in peripheral blood derived mononuclear cells; we could identify disease-specific gene panels that separate each disease from healthy controls. In addition, a panel of five genes such as ADM, AQP9, CXCL2, IL10 and NAMPT discriminates between all samples from patients with chronic inflammation and healthy controls. We also found genes that stratify the diseases and separate different subtypes or different states of prognosis in each condition.ConclusionsThese findings and the identification of five universal markers of chronic inflammation suggest that these diseases have a common background in pathomechanism, but still can be separated by peripheral blood gene expression. Importantly, the identified genes can be associated with overlapping biological processes including changed inflammatory response. Gene panels based on such markers can play a major role in the development of personalized medicine, in monitoring disease progression and can lead to the identification of new potential drug targets in chronic inflammation.
Journal of Immunology | 2010
Dániel Töröcsik; Mónika Baráth; Szilvia Benko; Lajos Széles; Balazs Dezso; Szilard Poliska; Zoltán Hegyi; László Homolya; Istvan Szatmari; Arpad Lanyi; Laszlo Nagy
Dendritic cells (DCs) respond to changes in their lipid environment by altering gene expression and immunophenotype. Some of these alterations are mediated via the nuclear receptor superfamily. However, little is known about the contribution of liver X receptor (LXR) to DC biology. In this study, we present a systematic analysis of LXR, activated by synthetic ligands or naturally occurring oxysterols in developing human monocyte-derived DCs. We found that LXRs are present and can be activated throughout DC differentiation in monocyte- and blood-derived DCs. Administration of LXR-specific natural or synthetic activators induced target gene expression accompanied by increased expression of DC maturation markers, such as CD80 and CD86. In mature DCs, LXR activation augmented the production of inflammatory cytokines IL-12, TNF-α, IL-6, and IL-8 and resulted in an increased capacity to activate CD4+ T cell proliferation upon ligation with TLR4 or TLR3 ligands. These effects appear to be underpinned by prolonged NF-κB signaling. Supporting such an inflammatory role, we found that LXR positive DCs are present in reactive lymph nodes in vivo. We propose that activation of LXR represents a novel lipid-signaling paradigm that alters the inflammatory response of human DCs.
Molecular Endocrinology | 2010
Lajos Széles; Szilard Poliska; Gergely Nagy; Istvan Szatmari; Attila Szanto; Attila Pap; Malin Lindstedt; Saskia J. A. M. Santegoets; Ralph Rühl; Balazs Dezso; Laszlo Nagy
Retinoid X receptors (RXRs) are heterodimerization partners for many nuclear receptors and also act as homodimers. Heterodimers formed by RXR and a nonpermissive partner, e.g. retinoic acid receptor (RAR) and vitamin D receptor (VDR), can be activated only by the agonist of the partner receptor. In contrast, heterodimers that contain permissive partners, e.g. liver X receptor (LXR) and peroxisome proliferator-activated receptor (PPAR), can be activated by agonists for either the partner receptor or RXR, raising the possibility of pleiotropic RXR signaling. However, it is not known to what extent the receptor’s activation results in triggering mechanisms dependent or independent of permissive heterodimers. In this study, we systematically and quantitatively characterized all probable RXR-signaling pathways in differentiating human monocyte-derived dendritic cells (Mo-DCs). Using pharmacological, microarray and quantitative RT-PCR techniques, we identified and characterized gene sets regulated by RXR agonists (LG100268 and 9-cis retinoic acid) and agonists for LXRs, PPARs, RARα, and VDR. Our results demonstrated that permissiveness was partially impaired in Mo-DCs, because a large number of genes regulated by PPAR or LXR agonists was not affected by RXR-specific agonists or was regulated to a lesser extent. As expected, we found that RXR agonists regulated only small portions of RARα or VDR targets. Importantly, we could identify and characterize PPAR- and LXR-independent pathways in Mo-DCs most likely mediated by RXR homodimers. These data suggested that RXR signaling in Mo-DCs was mediated via multiple permissive heterodimers and also by mechanism(s) independent of permissive heterodimers, and it was controlled in a cell-type and gene-specific manner.
Genes & Development | 2014
Bence Daniel; Gergely Nagy; Nasun Hah; Attila Horvath; Zsolt Czimmerer; Szilard Poliska; Tibor Gyuris; Jiri Keirsse; Conny Gysemans; Jo A. Van Ginderachter; Balint L. Balint; Ronald M. Evans; Endre Barta; Laszlo Nagy
RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program.
Journal of Proteomics | 2012
Éva Csősz; Péter Boross; Adrienne Csutak; András Berta; Ferenc D. Tóth; Szilard Poliska; Zsolt Török; József Tőzsér
Diabetic retinopathy is the leading cause of new cases of legal blindness among adults in the developed countries. Approximately 40% of all people with diabetes have diabetic retinopathy and 5% of these have sight-threatening form. As the advanced stage, where there is a high risk for vision loss, can develop without any serious symptoms, sometimes it is hard to detect it. A non invasive method to detect biomarkers characteristic for diabetic retinopathy from the tear fluid was developed. Tear samples from diabetic patients with no retinopathy, non proliferative and proliferative stages of diabetic retinopathy were analyzed and the protein content of each sample was compared to the protein content of tear pool from healthy volunteers. The samples were labeled with iTRAQ fourplex labels and were analyzed with nanoHPLC coupled ESI-MS/MS mass spectrometry. The lipocalin 1, lactotransferrin, lacritin, lysozyme C, lipophilin A and immunoglobulin lambda chain were identified as possible biomarker candidates with significantly higher relative levels in the tear of patients with diabetic retinopathy.
Journal of Immunology | 2013
Tamas Varga; Rémi Mounier; Péter Gogolák; Szilard Poliska; Bénédicte Chazaud; Laszlo Nagy
There are several open questions regarding the origin, development, and differentiation of subpopulations of monocytes, macrophages (MFs), and dendritic cells. It is a particularly intriguing question how circulating monocyte subsets develop and contribute to the generation of steady-state and inflammatory tissue MF pools and which transcriptional mechanisms contribute to these processes. In this study, we took advantage of a genetic model in which LyC6− circulating monocyte development is severely diminished due to the lack of the nuclear receptor, NUR77. We show that, in a mouse model of skeletal muscle injury and regeneration, the accumulation of leukocytes and the generation of LyC6+ and LyC6− MF pools are intact in the absence of circulating LyC6− blood monocytes. These data suggest that NUR77, which is required for LyC6− blood monocyte development, is expressed but not critically required for LyC6+ to LyC6− tissue MF specification. Moreover, these observations support a model according to which tissue macrophage subtype specification is distinct from that of circulating monocytes. Lastly, our data show that in the used sterile inflammation model tissue LyC6− MFs are derived from LyC6+ cells.
Journal of Immunology | 2016
Tamas Varga; Rémi Mounier; Attila Horvath; Sylvain Cuvellier; Florent Dumont; Szilard Poliska; Hamida Ardjoune; Gaëtan Juban; Laszlo Nagy; Bénédicte Chazaud
Macrophage gene expression determines phagocyte responses and effector functions. Macrophage plasticity has been mainly addressed in in vitro models that do not account for the environmental complexity observed in vivo. In this study, we show that microarray gene expression profiling revealed a highly dynamic landscape of transcriptomic changes of Ly6CposCX3CR1lo and Ly6CnegCX3CR1hi macrophage populations during skeletal muscle regeneration after a sterile damage. Systematic gene expression analysis revealed that the time elapsed, much more than Ly6C status, was correlated with the largest differential gene expression, indicating that the time course of inflammation was the predominant driving force of macrophage gene expression. Moreover, Ly6Cpos/Ly6Cneg subsets could not have been aligned to canonical M1/M2 profiles. Instead, a combination of analyses suggested the existence of four main features of muscle-derived macrophages specifying important steps of regeneration: 1) infiltrating Ly6Cpos macrophages expressed acute-phase proteins and exhibited an inflammatory profile independent of IFN-γ, making them damage-associated macrophages; 2) metabolic changes of macrophages, characterized by a decreased glycolysis and an increased tricarboxylic acid cycle/oxidative pathway, preceded the switch to and sustained their anti-inflammatory profile; 3) Ly6Cneg macrophages, originating from skewed Ly6Cpos cells, actively proliferated; and 4) later on, restorative Ly6Cneg macrophages were characterized by a novel profile, indicative of secretion of molecules involved in intercellular communications, notably matrix-related molecules. These results show the highly dynamic nature of the macrophage response at the molecular level after an acute tissue injury and subsequent repair, and associate a specific signature of macrophages to predictive specialized functions of macrophages at each step of tissue injury/repair.
Journal of Investigative Dermatology | 2014
Anikó Dózsa; Balazs Dezso; Balázs István Tóth; Attila Bacsi; Szilard Poliska; Emanuela Camera; Mauro Picardo; Christos C. Zouboulis; Tamás Bíró; Gerd Schmitz; Gerhard Liebisch; Ralph Rühl; Éva Remenyik; Laszlo Nagy
The transcriptional basis of sebocyte differentiation and lipid production is mostly unclear. Peroxisome proliferator-activated receptor gamma (PPARγ), a lipid-activated transcription factor, has been implicated in differentiation and lipid metabolism of various cell types. Here, we show that PPARγ is differentially expressed in normal and pathological human sebocytes and appears to have roles in their differentiation and lipid production. We used laser-microdissected normal and pathological human sebaceous glands (SGs) and SZ95 cells (immortalized sebocyte cell line) analyzed by real-time quantitative PCR and immunohistochemistry. Lipids were analyzed by quantitative fluorimetry- and mass spectrometry-based approaches. We have observed that PPARγ and its target genes, ADRP (adipose differentiation-related protein) and PGAR (PPARγ angiopoietin-related protein), are expressed in sebocytes and show association with their level of differentiation. Also, PPARγ is present in normal and hyperplastic SG, whereas its expression levels are decreased in SG adenoma and SG carcinoma cells, reflecting a maturation-linked expression pattern. Furthermore, in SZ95 sebocytes, naturally occurring lipids, including arachidonic acid and arachidonic acid keto-metabolites (e.g., 5-KETE (5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid), 12-KETE (12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid)), appear to regulate PPARγ signaling pathways, which in turn modulate phospholipid biosynthesis and induce neutral lipid synthesis. Collectively, our findings highlight the importance of endogenous ligand-activated PPARγ signaling in human sebocyte biology and suggest that PPARγ might be a promising candidate for the clinical management of SG disorders.