Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Szilvia Bösze is active.

Publication


Featured researches published by Szilvia Bösze.


Journal of Organic Chemistry | 2010

Direct Solid-Phase Synthesis of the β-Amyloid (1—42) Peptide Using Controlled Microwave Heating

Bernadett Bacsa; Szilvia Bösze; C. Oliver Kappe

Standard linear Fmoc/t-Bu solid-phase synthesis of the 42-mer beta-amyloid (1-42) peptide was achieved under controlled microwave conditions at 86 degrees C using inexpensive DIC/HOBt as coupling reagent on ChemMatrix resin. In order to avoid racemization of the sensitive amino acids, the coupling of the three His residues in the difficult peptide sequence was performed at room temperature. The desired peptide was obtained within 15 h overall processing time in high yield and purity (78% crude yield).


Bioconjugate Chemistry | 2009

Development of an Oxime Bond Containing Daunorubicin-Gonadotropin-Releasing Hormone-III Conjugate as a Potential Anticancer Drug

Ildikò Szabò; Marilena Manea; Erika Orbán; Antal Csámpai; Szilvia Bösze; Rita Szabó; Miguel Tejeda; D. Gaál; Bence Kapuvári; Michael Przybylski; Ferenc Hudecz

Here, we report on the synthesis and biological properties of a conjugate in which daunorubicin (Dau) as chemotherapeutic agent was attached through an oxime bond to gonadotropin-releasing hormone-III (GnRH-III) as targeting moiety. In vitro toxicity and the cytostatic effect of the conjugate on MCF-7 human breast and C26 murine colon cancer cell lines were determined, and the results were compared with those obtained for the free daunorubicin, as well as with the doxorubicin containing derivative. In vivo antitumor effect of daunorubicin-GnRH-III was studied on Balb/c female mice transplanted with C26 tumor. Our data indicate that the daunorubicin-GnRH-III conjugate had a lower toxic effect than the free daunorubicin and it was essentially nontoxic up to 15 mg (Dau content)/kg body weight. The treatment of the C26 tumor bearing mice with the conjugate led to tumor growth inhibition and longer survival time in comparison with the controls and with the administration of the free drug. When mice were treated twice with the conjugate (on days 4 and 7 after tumor transplantation), 46% tumor growth inhibition was obtained. In this case, the increase of the median survival time was 38% compared to the controls.


European Journal of Medicinal Chemistry | 2010

New amino acid esters of salicylanilides active against MDR-TB and other microbes.

Martin Krátký; Jarmila Vinšová; Vladimír Buchta; Kata Horváti; Szilvia Bösze; Jiřina Stolaříková

Eleven halogenated (S)-2-(phenylcarbamoyl)phenyl 2-acetamido-3-phenylpropanoates (3a-3k) were designed and synthesized as potential antimicrobial agents. They were evaluated in vitro against some mycobacterial, bacterial and fungal strains. These compounds were active against drug-sensitive and atypical mycobacterial strains with general MIC values from 0.25 to 16 μmol/L. The most active compounds were (S)-4-chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl 2-acetamido-3-phenylpropanoate (3i) and (S)-4-bromo-2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl 2-acetamido-3-phenylpropanoate (3k) which exhibited activity against MDR and XDR-TB strains with MICs from 1 to 2 μmol/L. 3k was shown to be less cytotoxic with higher IC50. Some compounds exhibited low MICs on Gram-positive bacteria (MICs≥0.98 μmol/L) and on fungi (MICs≥3.9 μmol/L).


European Biophysics Journal | 2017

Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials

Beatrix Peter; Szilvia Bösze; Robert Horvath

Herbs and traditional medicines have been applied for thousands of years, but researchers started to study their mode of action at the molecular, cellular and tissue levels only recently. Nowadays, just like in ancient times, natural compounds are still determining factors in remedies. To support this statement, the recently won Nobel Prize for an anti-malaria agent from the plant sweet wormwood, which had been used to effectively treat the disease, could be mentioned. Among natural compounds and traditional Chinese medicines, the green tea polyphenol epigallocatechin gallate (EGCg) is one of the most studied active substances. In the present review, we summarize the molecular scale interactions of proteins and EGCg with special focus on its limited stability and antioxidant properties. We outline the observed biophysical effects of EGCg on various cell lines and cultures. The alteration of cell adhesion, motility, migration, stiffness, apoptosis, proliferation as well as the different impacts on normal and cancer cells are all reviewed. We also handle the works performed using animal models, microbes and clinical trials. Novel ways to develop its utilization for therapeutic purposes in the future are discussed too, for instance, using nanoparticles and green tea polyphenols together to cure illnesses and the combination of EGCg and anticancer compounds to intensify their effects. The limitations of the employed experimental models and criticisms of the interpretation of the obtained experimental data are summarized as well.


Journal of Peptide Science | 2011

Efficient synthesis of an (aminooxy) acetylated-somatostatin derivative using (aminooxy)acetic acid as a 'carbonyl capture' reagent.

Ildikò Szabò; István Kertész; Rózsa Hegedüs; Erika Orbán; Ulrike Leurs; Szilvia Bösze; Gabor Halmos; Marilena Manea

Owing to the high chemoselectivity between an aminooxy function and a carbonyl group, oxime ligation is one of the most preferred procedures for the preparation of peptide conjugates. However, the sensitivity of (aminooxy)acetylated peptides to ketones and aldehydes makes their synthesis and storage difficult. In our study, we established the efficient synthesis of an (aminooxy)acetylated‐somatostatin derivative in the presence of free (aminooxy)acetic acid, which was used as a ‘carbonyl capture’ reagent in the final cleavage step. This (aminooxy)acetylated compound was further used for the chemoselective ligation (oxime bond formation) with daunorubicin and 4‐fluorobenzaldehyde leading to the formation of conjugates with potential applications in targeted cancer chemotherapy and positron emission tomography. Copyright


Molecules | 2012

Acylated mono-, bis- and tris- Cinchona-Based Amines Containing Ferrocene or Organic Residues: Synthesis, Structure and in Vitro Antitumor Activity on Selected Human Cancer Cell Lines

Benedek Imre Károlyi; Szilvia Bösze; Erika Orbán; Pál Sohár; László Drahos; Emese Gal; Antal Csámpai

A series of novel functionalized mono-, bis- and tris-(S)-{[(2S,4R,8R)-8-ethyl-quinuclidin-2-yl](6-methoxyquinolin-4-yl)}methanamines including ferrocene-containing derivatives was obtained by the reaction of the precursor amine with a variety of acylation agents. Their in vitro antitumor activity was investigated against human leukemia (HL-60), human neuroblastoma (SH-SY5Y), human hepatoma (HepG2) and human breast cancer (MCF-7) cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-assay and the 50% inhibitory concentration (IC50) values were determined. Our data indicate that the precursor amine has no antitumor activity in vitro, but the bis-methanamines with ureido-, thioureido and amide-type linkers display attractive in vitro cytotoxicity and cytostatic effects on HL-60, HepG2, MCF-7 and SH-SY5Y cells. Besides 1H- and 13C-NMR methods the structures of the new model compounds were also studied by DFT calculations.


Journal of Peptide Science | 2009

Peptide conjugates of therapeutically used antitubercular isoniazid—design, synthesis and antimycobacterial effect

Kata Horváti; Nóra Szabó; Ferenc Hudecz; Szilvia Bösze

Tuberculosis (TB) is a bacterial infectious disease caused by Mycobacterium tuberculosis, a slow‐growing, powerful human pathogen which can survive in the host macrophages. In the chemotherapy of such intracellular pathogens it is necessary to achieve relatively high level of the drug in blood to attain therapeutically effective concentration in infected cells, which presumably has several serious side effects on healthy tissues. The elimination of M. tuberculosis from infected phagocytes could be more efficient with target cell‐directed delivery of antituberculars. A particularly promising approach is to conjugate a drug moiety to a peptide based carrier. The conjugates are chemically constructed to target release by hydrolysis (enzymatic and/or chemical) to liberate the active compound. Here we report the synthesis, characterisation and antimycobacterial evaluation of isoniazid (INH) peptide conjugates. As carrier moiety T‐cell epitope of immundominant 16‐kDa protein of M. tuberculosis and tuftsin‐derived peptides were used. To conjugate INH two synthetic methods were developed, where INH was coupled directly to the peptides or through a heterobifunctional reagent. We found that all of the INH conjugates were effective against M. tuberculosis and the minimal inhibitory concentration (MIC) values were comparable to the free INH moiety. Copyright


Physical Chemistry Chemical Physics | 2010

Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model

Katalin Hill; Csanád Botond Pénzes; Donát Schnöller; Kata Horváti; Szilvia Bösze; Ferenc Hudecz; Tamás Keszthelyi; Éva Kiss

Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.


Biophysical Chemistry | 2003

Synthesis, solution structure analysis and antibody binding of cyclic epitope peptides from glycoprotein D of Herpes simplex virus type I

Gitta Schlosser; Elemér Vass; Zsuzsa Majer; Matty Feijlbrief; András Perczel; Szilvia Bösze; Sytske Welling-Wester; Ferenc Hudecz

Two cyclic peptides with a thioether bond have been synthesised corresponding to the 9-22 (9LKMADPNRFRGKDL(22)) sequence of glycoprotein D (gD-1) of Herpes simplex virus. The role of the secondary structure in protein-specific monoclonal antibody recognition was investigated. The sequence selected for this study comprises a strongly antigenic site adopting a beta-turn at residues 14Pro-(15)Asn. Thioether bond was formed between the free thiol group of cysteine or homocysteine inserted in position 11 and the chloroacetylated side chain of lysine in position 18. We report here the preparation of cyclic peptides containing Cys or Hcy in position 11, differing only in one methylene group. The linear precursor peptides were synthesised by Boc/Bzl strategy on MBHA resin, and the cyclisation was carried out in alkaline solution. The secondary structure of the peptides was studied by CD, FT-IR and NMR spectroscopy. The CD and FT-IR data have revealed fundamental changes in the solution conformation of the two compounds. The CH(2) group difference significantly resulted in the altered turn structure at the 12Ala and 13Asp as identified by NMR spectroscopy. The antibody binding properties of the cyclopeptides studied by gD-specific monoclonal antibody (A16) in direct and competition enzyme-linked immunosorbent assay (ELISA) were also not the same. We found that peptide LK[HcyADPNRFK]GKDL exhibited higher affinity to Mab A16 than peptide LK[CADPNRFK]GKDL, however, their reactivity was significantly lower compared to the linear ones. Our results clearly show the importance of secondary structure in an antibody binding and demonstrate that even a slight modification of the primary structure dramatically could influence the immune recognition of the synthetic antigens.


Immunology Letters | 1995

The effect of WSEWS pentapeptide and WSEWS-specific monoclonal antibodies on constitutive and IL-6 induced acute-phase protein production by a human hepatoma cell line, HEPG-2

Judit Biró; Szilvia Bösze; Ferenc Hudecz; Zoltán Lóránt Nagy; Éva Rajnavölgyi; Béla Schmidt; Eva Rakasz; András Falus

Interleukin-6 receptor (IL-6R) is a member of the cytokine receptor superfamily characterised by the obligatory presence of WSXWS (Trp-Ser-X-Trp-Ser) sequence motif near the transmembrane domain. To more clearly understand the role of this motif, we treated the HepG2 hepatoma cell line with synthetic WSEWS peptide (E is glutamic acid) and checked the spontaneous and IL-6-induced production of acute-phase protein fibrinogen and C1-inhibitor (C1-INH). The peptide revealed a definitely stimulatory effect both on the constitutive synthesis of C1-INH and on the IL-6-induced fibrinogen synthesis of HepG2 cells. Monoclonal antibody specific for WSEWS pentapeptide was stimulatory for the spontaneous secretion of both fibrinogen and C1-INH. However, the IL-6-induced elevations of these acute-phase proteins were oppositely regulated, since the anti-WSEWS monoclonal antibody was inhibitory on the production of fibrinogen induced by IL-6 but strongly augmented the IL-6 induced production of C1-INH. Our study indicates that the WSEWS motif is critical in the effect of IL-6 on the acute-phase protein production influencing either the ligand binding by the WSEWS-containing receptor molecule or the signal transduction.

Collaboration


Dive into the Szilvia Bösze's collaboration.

Top Co-Authors

Avatar

Ferenc Hudecz

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Kata Horváti

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Erika Orbán

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ferenc Sebestyén

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antal Csámpai

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Szabó

Eötvös Loránd University

View shared research outputs
Researchain Logo
Decentralizing Knowledge