Szilvia Kusza
University of Debrecen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Szilvia Kusza.
PLOS ONE | 2014
Szilvia Kusza; Tomasz Podgórski; Massimo Scandura; Tomasz Borowik; András Jávor; Vadim E. Sidorovich; Aleksei N. Bunevich; Mikhail Kolesnikov; Bogumiła Jędrzejewska
The wild boar (Sus scrofa) is one of the most widely distributed mammals in Europe. Its demography was affected by various events in the past and today populations are increasing throughout Europe. We examined genetic diversity, structure and population dynamics of wild boar in Central and Eastern Europe. MtDNA control region (664 bp) was sequenced in 254 wild boar from six countries (Poland, Hungary, Belarus, Ukraine, Moldova and the European part of Russia). We detected 16 haplotypes, all known from previous studies in Europe; 14 of them belonged to European 1 (E1) clade, including 13 haplotypes from E1-C and one from E1-A lineages. Two haplotypes belonged respectively to the East Asian and the Near Eastern clade. Both haplotypes were found in Russia and most probably originated from the documented translocations of wild boar. The studied populations showed moderate haplotype (0.714±0.023) and low nucleotide diversity (0.003±0.002). SAMOVA grouped the genetic structuring of Central and Eastern European wild boar into three subpopulations, comprising of: (1) north-eastern Belarus and the European part of Russia, (2) Poland, Ukraine, Moldova and most of Belarus, and (3) Hungary. The multimodal mismatch distribution, Fus Fs index, Bayesian skyline plot and the high occurrence of shared haplotypes among populations did not suggest strong demographic fluctuations in wild boar numbers in the Holocene and pre-Holocene times. This study showed relatively weak genetic diversity and structure in Central and Eastern European wild boar populations and underlined gaps in our knowledge on the role of southern refugia and demographic processes shaping genetic diversity of wild boar in this part of Europe.
Genetics and Molecular Biology | 2010
Szilvia Kusza; Doytcho Dimov; István Nagy; Zsuzsanna Bõsze; András Jávor; Sándor Kukovics
Herein, genetic relationships among five breeds of Bulgarian sheep were estimated using microsatellite markers. The total number of alleles identified was 226 at the 16 loci examined. DA distance values were used for phylogenetic tree construction with the UPGMA algorithm. The two Tsigai and two Maritza populations were found to be geneticallvery closely related to each other y (0.198, and 0.258 respectively). The Pleven Black Head population was distinct from the other four. These results could be useful for preserving genes in these breeds, thereby ensuring their preservation in Bulgaria.
Ecology and Evolution | 2015
Erika Péntek-Zakar; Andrzej Oleksa; Tomasz Borowik; Szilvia Kusza
Abstract Carniolan honey bees (Apis mellifera carnica) are considered as an indigenous subspecies in Hungary adapted to most of the ecological and climatic conditions in this area. However, during the last decades Hungarian beekeepers have recognized morphological signs of the Italian honey bee (Apis mellifera ligustica). As the natural distribution of the honey bee subspecies can be affected by the importation of honey bee queens or by natural gene flow, we aimed at determining the genetic structure and characteristics of the local honey bee population using molecular markers. All together, 48 Hungarian and 84 foreign (Italian, Polish, Spanish, Liberian) pupae and/or workers were used for mitochondrial DNA analysis. Additionally, 53 sequences corresponding to 10 subspecies and the Buckfast hybrid were downloaded from GenBank. For the nuclear analysis, 236 Hungarian and 106 foreign honey bees were genotyped using nine microsatellites. Heterozygosity values, population‐specific alleles, FST values, principal coordinate analysis, assignment tests, structure analysis, and dendrograms were calculated. Haplotype and nucleotide diversity values showed moderate values. We found that one haplotype (H9) was dominant in Hungary. The presence of the black honey bee (Apis mellifera mellifera) was negligible, but a few individuals resembling other subspecies were identified. We proved that the Hungarian honey bee population is nearly homogeneous but also demonstrated introgression from the foreign subspecies. Both mitochondrial DNA and microsatellite analyses corroborated the observations of the beekeepers. Molecular analyses suggested that Carniolan honey bee in Hungary is slightly affected by Italian and black honey bee introgression. Genetic differences were detected between Polish and Hungarian Carniolan honey bee populations, suggesting the existence of at least two different gene pools within A. m. carnica.
Archives Animal Breeding | 2013
János Oláh; Szilvia Kusza; Sándor Harangi; János Posta; András Kovács; Anna Pécsi; Csilla Budai; András Jávor
Abstract. In this study, the quantitative and qualitative traits of semen were studied in seven rams of different breeds (Prolific Merino, Cokanski Tsigai, Barbados Blackbelly, Babolna Tetra, Awassi, Ile de France and Suffolk), bred in Hungary. The semen parameters (density, volume, pH, mass motility, % motility, thawing and heat resistance), freezability of semen and the factors influencing these parameters were evaluated with respect to breed and season. The fresh and post-thawing quality of semen varied greatly with the breed and the season. The postthawing motility of semen cells was outstandingly high for Awassi rams in three seasons. During the test period, the smallest scrotal circumference was measured for Barbados Blackbelly, except for the summer when it increased by 12.5 cm. The reintroduction of artificial insemination could lead to a significant advancement of the sheep sector in Hungary. To promote this, we have provided useful and new information for breeders and organisations.
PLOS ONE | 2015
Daniela Elena Ilie; Ada Cean; Ludovic Toma Cziszter; Dinu Gavojdian; Alexandra Ivan; Szilvia Kusza
The Eastern European Grey cattle are regarded as the direct descendants of the aurochs (Bos taurus primigenius). Nowadays in Romania, less than 100 Grey animals are being reared and included in the national gene reserve. We examined the genetic diversity among Romanian Grey, Brown, Spotted and Black and White cattle breeds, with a particular focus on Romanian Grey through the use of (i) 11 bovine specific microsatellite markers on 83 animals and (ii) 638 bp length of mitochondrial DNA (mtDNA) D-loop region sequence data from a total of 81 animals. Both microsatellite and mtDNA analysis revealed a high level of genetic variation in the studied breeds. In Romanian Grey a total of 100 alleles were found, the mean number of observed alleles per locus was 9.091; the average observed heterozygosity was 0.940; the Wright’s fixation index (FIS) was negative (-0.189) and indicates that there is no inbreeding and no selection pressure. MtDNA analysis revealed 52 haplotypes with 67 variable sites among the Romanian cattle breeds without any insertion or deletion. Haplotype diversity was 0.980 ± 0.007 and ranged from 0.883 ± 0.056 (Brown) to 0.990 ± 0.028 (Spotted and Black and White). The highest genetic variability of the mtDNA was recorded in the Grey breed, where 18 haplotypes were identified. The most frequent mtDNA D-loop region belonged to T3 haplogroup (80.247%), which was found across all studied breeds, while T2 haplotypes (16.049%) was only found in Grey, Spotted and Black and White genotypes. The T1 haplotypes (3.704%) were found in the Grey and Spotted. The current results contribute to the general knowledge on genetic diversity found in Eastern European cattle breeds and could prove a valuable tool for the conservation efforts of animal genetic resources (FAnGR).
PeerJ | 2016
Nikolett Sziszkosz; Sándor Mihók; András Jávor; Szilvia Kusza
The Gidran is a native Hungarian horse breed that has approached extinction several times. Phylogenetic analysis of two mitochondrial markers (D-loop and cytochrome-b) was performed to determine the genetic characterization of the Gidran for the first time as well as to detect errors in the management of the Gidran stud book. Sequencing of 686 bp of CYTB and 202 bp of the D-loop in 260 mares revealed 24 and 32 haplotypes, respectively, among 31 mare families. BLAST analysis revealed six novel CYTB and four D-loop haplotypes that have not been previously reported. The Gidran mares showed high haplotype (CYTB: 0.8735 ± 0.011; D-loop: 0.9136 ± 0.008) and moderate nucleotide (CYTB: 0.00472 ± 0.00017; D-loop: 0.02091 ± 0.00068) diversity. Of the 31 Gidran mare families, only 15 CYTB (48.4%) and 17 D-loop (54.8%) distinct haplotypes were formed using the two markers separately. Merged markers created 24 (77.4%) mare families, which were in agreement with the mare families in the stud book. Our key finding was that the Gidran breed still possesses high genetic diversity despite its history. The obtained haplotypes are mostly consistent with known mare families, particularly when the two mtDNA markers were merged. Our results could facilitate conservation efforts for preserving the genetic diversity of the Gidran.
Acta Biochimica Polonica | 2016
Ágnes Hunyadi-Bagi; Péter Balogh; Krisztina Nagy; Szilvia Kusza
Seven genes (BF, EGF, ESR, FSHB, H2AFZ, LEP and PRLP) were studied as candidate gene influencing eleven reproduction traits (interval between litters (IBL), percent of litter (PL), number of litters (NL), number of piglets born dead (NBD), number of piglet born alive (NBA), total number born (TNB), mean of born alive (MBA), mean of born dead (MBD), mean of born total (MBT), mean of piglets at 21 days of age (M21D) and growth rate (GR) in three pig breeds (Hungarian Large White (HLW), Duroc and Pietrain) by PCR-RFLP. Based on the observed vs. expected genotypes frequencies populations across loci were in Hardy-Weinberg equilibrium (P>0.05). In case HLW breed ESR and FSHβ genes were in disequilibrium. Association study suggested that only EGF gene showed significant influence on the trait NBA and TNB. The AA genotype are preferable for sows, associated with higher NBA and TNB. The longest IBL, and the highest NL is associated with AB and AA genotype of EGF gene. IBL is significantly shorter in case of pigs with AB and AA alleles than BB alleles of PRLP genes. Selection for these SNPs could improve the reproductivity in the studied breeds.
Acta Biochimica Polonica | 2015
Szilvia Kusza; Erika Zakar; Csilla Budai; L.T. Cziszter; Ioan Padeanu; Dinu Gavojdian
The current knowledge and documentation on the origins and relationship between Gyimesi Racka reared in Hungary and the Romanian Turcana is rather controversial. Lack of information and scientific reliable proofs for the divergent theories found in the two countries motivated us to implement a trial using molecular methods to assess the genetic distance and diversity in the two breeds. Hair follicles were collected from Gyimesi Racka (2 phenotypes) and from Turcana (6 ecotypes). The 599 bp segment of the D-loop region of the mitochondrial DNA was sequenced. Altogether, 42 haplotypes were identified, while 23 were found in both populations. Populations were highly diverse according to the haplotype and nucleotide diversity indices. AMOVA analysis showed that most of the variation was observed within populations (98%), indicating a weak genetic structure between the two breeds. Animals were grouped into seven groups based on their phenotype; however genetic distances among them were also low. Tajimas D, Fus Fs, goodness-of-fit statistics, mismatch distribution and network analysis suggested recent demographic expansion. Current comprehensive mtDNA study indicates that there is very low level of genetic differentiation between the Gyimesi Racka and Turcana populations therefore they are de facto one trans-boundary breed.
PeerJ | 2018
Szilvia Kusza; Ludovic Toma Cziszter; Daniela Elena Ilie; Maria Sauer; Ioan Padeanu; Dinu Gavojdian
Using a novel and fast genotyping method called Kompetitive Allele Specific PCR (KASP™), we carried out a pilot study on 48 single nucleotide polymorphisms (SNPs) belonging to 40 genes in French Alpine (n = 24) and Saanen (n = 25) goats reared in Romania. Furthermore, the associations of the 13 polymorphic genetic variants with milk production and composition were investigated. Thirty-five SNPs did not show polymorphism in the studied populations. Polymorphic SNPs were detected in the following genes: CAST, CLEC4E, DES, GHRHR, HSP90AA1, IL15RA, IL1RN, IL8, MITF, PPRC1, SOCS3, TNF and TNFSF13. The studied Alpine population was in Hardy-Weinberg disequilibrium at the g.62894878A>G locus (rs671391101) (P < 0.05). The results showed that four SNPs rs671391101 (GHRHR), rs640582069 (IL1RN) rs635583012 (SOCS3) and rs635969404 (IL15RA) out of the 13 polymorphic markers were significantly associated with milk production, protein, fat and lactose content in the Alpine breed. However, no significant effect was recorded in the Saanen population regarding milk yield or milk chemical composition. The current results provide new insights for the development of SNP marker-assisted selection technology in the goat industry and confirm the potential of using SNPs for the GHRHR, IL1RN, SOCS3, and IL15RA genes as candidate genes for selection, highlighting the direct implications of such genes for farm production outputs. The results from this study are relevant for future goat genomic studies and the inclusion of the associated traits into up-to-date selection schemes.
PeerJ | 2018
Nikolett Csizmár; Sándor Mihók; András Jávor; Szilvia Kusza
Background The Hungarian draft is a horse breed with a recent mixed ancestry created in the 1920s by crossing local mares with draught horses imported from France and Belgium. The interest in its conservation and characterization has increased over the last few years. The aim of this work is to contribute to the characterization of the endangered Hungarian heavy draft horse populations in order to obtain useful information to implement conservation strategies for these genetic stocks. Methods To genetically characterize the breed and to set up the basis for a conservation program, in the present study a hypervariable region of the mitochrondial DNA (D-loop) was used to assess genetic diversity in Hungarian draft horses. Two hundred and eighty five sequences obtained in our laboratory and 419 downloaded sequences available from Genbank were analyzed. Results One hundred and sixty-four haplotypes and thirty-six polymorphic sites were observed. High haplotype and nucleotide diversity values (Hd = 0.954 ± 0.004; π = 0.028 ± 0.0004) were identified in Hungarian population, although they were higher within than among the different populations (Hd = 0.972 ± 0.002; π = 0.03097 ± 0.002). Fourteen of the previously observed seventeen haplogroups were detected. Discussion Our samples showed a large intra- and interbreed variation. There was no clear clustering on the median joining network figure. The overall information collected in this work led us to consider that the genetic scenario observed for Hungarian draft breed is more likely the result of contributions from ‘ancestrally’ different genetic backgrounds. This study could contribute to the development of a breeding plan for Hungarian draft horses and help to formulate a genetic conservation plan, avoiding inbreeding while.
Collaboration
Dive into the Szilvia Kusza's collaboration.
Banat University of Agricultural Sciences and Veterinary Medicine
View shared research outputs