Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Szu Chuan Shen is active.

Publication


Featured researches published by Szu Chuan Shen.


Phytotherapy Research | 2008

Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats.

Szu Chuan Shen; Fang Chi Cheng; Ning Jung Wu

This study investigated the effect of aqueous and ethanol soluble solid extracts of guava (Psidium guajava Linn.) leaves on hypoglycemia and glucose metabolism in type 2 diabetic rats. Low‐dose streptozotocin (STZ) and nicotinamide were injected into Sprague‐Dawley (SD) rats to induce type 2 diabetes. Acute and long‐term feeding tests were carried out, and an oral glucose tolerance test (OGTT) to follow the changes in plasma glucose and insulin levels was performed to evaluate the antihyperglycemic effect of guava leaf extracts in diabetic rats.


Journal of Agricultural and Food Chemistry | 2009

Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes

Da-Wei Huang; Szu Chuan Shen; James Swi-Bea Wu

Tumor necrosis factor-alpha was used to induce insulin resistance of mouse liver FL83B cells. Two phenolic acids, caffeic acid and cinnamic acid, were then added separately to investigate their effects on glucose uptake of the insulin-resistant cells. The results suggest that these two phenolic acids may promote insulin receptor tyrosyl phosphorylation, up-regulate the expression of insulin signal associated proteins, including insulin receptor, phosphatidylinositol-3 kinase, glycogen synthase, and glucose transporter-2, increase the uptake of glucose, and alleviate insulin resistance in cells as a consequence.


Journal of Food Science | 2009

Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

Fang Chi Cheng; Szu Chuan Shen; James Swi Bea Wu

People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.


Nutrients | 2015

Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats

Wen Chang Chang; James Swi-Bea Wu; Chen Wen Chen; Po Ling Kuo; Hsu Min Chien; Yuh Tai Wang; Szu Chuan Shen

Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight) at weeks 13–16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p < 0.05), indicating the protective effects of VA against hyperinsulinemia, hyperglycemia and hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose) in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR) index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.


Phytotherapy Research | 2013

Effect of Water Extracts from Edible Myrtaceae Plants on Uptake of 2‐(n‐(7‐nitrobenz‐2‐oxa‐1,3‐diazol‐4‐yl)amino)‐2‐deoxyglucose in TNF‐α‐Treated FL83B Mouse Hepatocytes

Wen Chang Chang; Szu Chuan Shen

This study investigated the glucose uptake activity of the water extracts from the leaves and fruit of edible Myrtaceae plants, including guava (Psidium guajava Linn.), wax apples [Syzygium samarangense (Blume) Merr. and L.M. Perry], Pu‐Tau [Syzygium jambo (L.) Alston], and Kan‐Shi Pu‐Tau (Syzygium cumini Linn.) in FL83B mouse hepatocytes. The fluorescent dye 2‐(n‐(7‐nitrobenz‐2‐oxa‐1,3‐diazol‐4‐yl)amino)‐2‐deoxyglucose was used to estimate the uptake ability of the cells. Glucose uptake test showed that pink wax apple fruit extract (PWFE) exhibits the highest glucose uptake activity, at an increment of 21% in the insulin‐resistant FL83B mouse hepatocytes as compared with the TNF‐α‐treated control group. Vescalagin was isolated using column chromatography of PWFE. This compound, at the concentration of 6.25 µg/mL, exhibits the same glucose uptake improvement in insulin‐resistant cells as PWFE at a 100‐µg/mL dose. We postulate that vescalagin is an active component in PWFE that may alleviate the insulin resistance in mouse hepatocytes. Copyright


Nutrition Research | 2016

Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet

Da Wei Huang; Wen Chang Chang; James Swi-Bea Wu; Rui Wen Shih; Szu Chuan Shen

Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus.


Journal of Agricultural and Food Chemistry | 2013

Protective effects of vescalagin from pink wax apple [Syzygium samarangense (Blume) Merrill and Perry] fruit against methylglyoxal-induced inflammation and carbohydrate metabolic disorder in rats.

Wen Chang Chang; Szu Chuan Shen; James Swi-Bea Wu

The unbalance of glucose metabolism in humans may cause the excessive formation of methylglyoxal (MG), which can react with various biomolecules to form the precursor of advanced glycation end products (AGEs). Vescalagin (VES) is an ellagitannin that alleviates insulin resistance in cell study. Results showed that VES reduced the value of oral glucose tolerance test, cardiovascular risk index, AGEs, and tumor necrosis factor-α contents while increasing C-peptide and d-lactate contents significantly in rats orally administered MG and VES together. The preventive effect of VES on MG-induced inflammation and carbohydrate metabolic disorder in rats was thus proved. On the basis of the experiment data, a mechanism, which involves the increase in d-lactate to retard AGE formation and the decrease in cytokine release to prevent β-cell damage, is proposed to explain the bioactivities of VES in antiglycation and in the alleviation of MG-induced carbohydrate metabolic disorder in rats.


Food Chemistry | 2013

Hypotriglyceridemic and hypoglycemic effects of vescalagin from Pink wax apple [Syzygium samarangense (Blume) Merrill and Perry cv. Pink] in high-fructose diet-induced diabetic rats

Szu Chuan Shen; Wen Chang Chang

Vescalagin, an active component from Pink wax apple [Syzygium samarangense (Blume) Merrill and Perry cv. Pink] fruit, with glucose uptake enhancing ability in insulin-resistant FL83B mouse hepatocytes, as shown in our previous study, was further evaluated for its hypotriglyceridemic and hypoglycemic effects in high-fructose diet (HFD)-induced diabetic rats. Wistar rats were fed HFD for 16 weeks and orally administered with vescalagin from Pink wax apple daily during the last 4 weeks. The results of biochemical parameters showed that fasting blood glucose, C-peptide, fructosamine, triglyceride and free fatty acid contents decreased by 44.7%, 46.2%, 4.0%, 42.5%, and 10.8%, respectively, in the HFD-induced diabetic rats administered with vescalagin at 30 mg/kg body weight in comparison with those of control HFD-induced diabetic rats. However, high-density-lipoprotein-cholesterol content increased by 14.4% in the HFD rats treated with vescalagin. The present study reveals that vescalagin could have therapeutic value against diabetic progression via its anti-hypertriglyceridemic and anti-hyperglycemic effects.


Nutrients | 2013

An Extract from Wax Apple (Syzygium samarangense (Blume) Merrill and Perry) Effects Glycogenesis and Glycolysis Pathways in Tumor Necrosis Factor-α-Treated FL83B Mouse Hepatocytes

Szu Chuan Shen; Wen Chang Chang; Chiao Li Chang

FL83B mouse hepatocytes were treated with tumor necrosis factor-α (TNF-α) to induce insulin resistance to investigate the effect of a wax apple aqueous extract (WAE) in insulin-resistant mouse hepatocytes. The uptake of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2 NBDG), a fluorescent D-glucose derivative, was performed, and the metabolism of carbohydrates was evaluated by examining the expression of glycogenesis or glycolysis-related proteins in insulin-resistant hepatocytes. The results show that WAE significantly improves the uptake of glucose and enhances glycogen content in insulin-resistant FL83B mouse hepatocytes. The results from Western blot analysis also reveal that WAE increases the expression of glycogen synthase (GS), hexokinase (HXK), glucose-6-phosphate dehydrogenase (G6PD), phosphofructokinase (PFK) and aldolase in TNF-α treated cells, indicating that WAE may ameliorate glucose metabolism by promoting glycogen synthesis and the glycolysis pathways in insulin-resistant FL83B mouse hepatocytes.


International Journal of Molecular Sciences | 2012

Fraction from Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Fruit Extract Ameliorates Insulin Resistance via Modulating Insulin Signaling and Inflammation Pathway in Tumor Necrosis Factor α-Treated FL83B Mouse Hepatocytes

Szu Chuan Shen; Wen Chang Chang; Chiao Li Chang

Inflammation is associated with the development of insulin resistance in Type 2 diabetes mellitus. In the present study, mouse FL83B cells were treated with tumor necrosis factor-alpha (TNF-α) to induce insulin resistance, and then co-incubated with a fraction from wax apple fruit extract (FWFE). This fraction significantly increased the uptake of the nonradioactive fluorescent indicator 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) in insulin resistant cells. Western blot analysis revealed that, compared with the TNF-α-treated control group, FWFE increased the expression of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), protein kinase B (Akt/PKB), phosphatidylinositol-3 kinase (PI3K), and glucose transporter 2 (GLUT-2), and increased IR tyrosyl phosporylation, in insulin resistant FL83B cells. However, FWFE decreased phosphorylation of c-Jun N-terminal kinases (JNK), but not the expression of the intercellular signal-regulated kinases (ERK), in the same cells. These results suggest that FWFE might alleviate insulin resistance in TNF-α-treated FL83B cells by activating PI3K-Akt/PKB signaling and inhibiting inflammatory response via suppression of JNK, rather than ERK, activation.

Collaboration


Dive into the Szu Chuan Shen's collaboration.

Top Co-Authors

Avatar

James Swi-Bea Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wen Chang Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Da Wei Huang

China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ming-Chang Wu

National Pingtung University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Da-Wei Huang

Southern Taiwan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hung-Min Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wen-Chang Chang

National Chiayi University

View shared research outputs
Top Co-Authors

Avatar

Chen Wen Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chiao Li Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chii Ming Jiang

National Kaohsiung Marine University

View shared research outputs
Researchain Logo
Decentralizing Knowledge