Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Szu-Wen Wang is active.

Publication


Featured researches published by Szu-Wen Wang.


Current Opinion in Biotechnology | 2014

Caged protein nanoparticles for drug delivery.

Nicholas M. Molino; Szu-Wen Wang

Caged protein nanoparticles possess many desirable features for drug delivery, such as ideal sizes for endocytosis, non-toxic biodegradability, and the ability to functionalize at three distinct interfaces (external, internal, and inter-subunit) using the tools of protein engineering. Researchers have harnessed these attributes by covalently and non-covalently loading therapeutic molecules through mechanisms that facilitate release within specific microenvironments. Effective delivery depends on several factors, including specific targeting, cell uptake, release kinetics, and systemic clearance. The innate ability of the immune system to recognize and respond to proteins has recently been exploited to deliver therapeutic compounds with these platforms for immunomodulation. The diversity of drugs, loading/release mechanisms, therapeutic targets, and therapeutic efficacy are discussed in this review.


ACS Nano | 2013

Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation.

Nicholas M. Molino; Amanda K. L. Anderson; Edward L. Nelson; Szu-Wen Wang

Many current cancer vaccine strategies suffer from the inability to mount a CD8 T cell response that is strong enough to overcome the low immunogenicity of tumors. Viruses naturally possess the sizes, geometries, and physical properties for which the immune system has evolved to recognize, and mimicking those properties with nanoparticles can produce robust platforms for vaccine design. Using the nonviral E2 core of pyruvate dehydrogenase, we have engineered a viral-mimicking vaccine platform capable of encapsulating dendritic cell (DC)-activating CpG molecules in an acid-releasable manner and displaying MHC I-restricted SIINFEKL peptide epitopes. Encapsulated CpG activated bone marrow-derived DCs at a 25-fold lower concentration in vitro when delivered with the E2 nanoparticle than with unbound CpG alone. Combining CpG and SIINFEKL within a single multifunctional particle induced ∼3-fold greater SIINFEKL display on MHC I by DCs over unbound peptide. Importantly, combining CpG and SIINFEKL to the E2 nanoparticle for simultaneous temporal and spatial delivery to DCs showed increased and prolonged CD8 T cell activation, relative to free peptide or peptide-bound E2. By codelivering peptide epitopes and CpG activator in a particle of optimal DC-uptake size, we demonstrate the ability of a noninfectious protein nanoparticle to mimic viral properties and facilitate enhanced DC activation and cross-presentation.


Biotechnology and Bioengineering | 2008

Thermostability and molecular encapsulation within an engineered caged protein scaffold

Mercè Dalmau; Sierin Lim; Helen C. Chen; Cesar Ruiz; Szu-Wen Wang

Self‐assembling biological complexes such as viral capsids have been manipulated to function in innovative nanotechnology applications. The E2 component of pyruvate dehydrogenase from Bacillus stearothermophilus forms a dodecahedral complex and potentially provides another platform for these purposes. In this investigation, we show that this protein assembly exhibits unusual stability and can be modified to encapsulate model drug molecules. To distill the E2 protein down to its structural scaffold core, we synthesized a truncated gene optimized for expression in Escherichia coli. The correct assembly and dodecahedral structure of the resulting scaffold was confirmed with dynamic light scattering and transmission electron microscopy. Using circular dichroism and differential scanning calorimetry, we found the thermostability of the complex to be unusually high, with an onset temperature of unfolding at 81.1 ± 0.9°C and an apparent midpoint unfolding temperature of 91.4 ± 1.4°C. To evaluate the potential of this scaffold for encapsulation of guest molecules, we made variants at residues 381 and 239 which altered the physicochemical properties of the hollow internal cavity. These mutants, yielding 60 and 120 mutations within this cavity, assembled into the correct architecture and exhibited high thermostability that was comparable to the wild‐type scaffold. To show the applicability of this scaffold, two different fluorescent dye molecules were covalently coupled to the cysteine mutant at site 381. We demonstrate that these mutations can introduce non‐native functionality and enable molecular encapsulation within the cavity while still retaining the dodecahedral structure. The unusually robust nature of this scaffold and its amenability to internal changes reveal its potential for nanoscale applications. Biotechnol. Bioeng. 2008;101: 654–664.


Nano Letters | 2009

Design of a pH-dependent molecular switch in a caged protein platform.

Mercè Dalmau; Sierin Lim; Szu-Wen Wang

Self-assembling protein cages provide a wide range of possible applications in nanotechnology. We report the first example of an engineered pH-dependent molecular switch in a virus-like particle. By genetically manipulating the subunit-subunit interface of the E2 subunit of pyruvate dehydrogenase, we introduce pH-responsive assembly into a scaffold that is natively stable at both pH 5.0 and 7.4. The redesigned protein module yields an intact, stable particle at pH 7.4 that dissociates at pH 5.0. This triggered behavior is especially relevant for applications in therapeutic delivery.


Biomacromolecules | 2012

Complement Activation and Cell Uptake Responses toward Polymer-Functionalized Protein Nanocapsules

Nicholas M. Molino; Kateryna Bilotkach; Deborah A. Fraser; Dongmei Ren; Szu-Wen Wang

Self-assembling protein nanocapsules can be engineered for various bionanotechnology applications. Using the dodecahedral scaffold of the E2 subunit from pyruvate dehydrogenase, we introduced non-native surface cysteines for site-directed functionalization. The modified nanoparticles structural, assembly, and thermostability properties were comparable to the wild-type scaffold (E2-WT), and after conjugation of poly(ethylene glycol) (PEG) to these cysteines, the nanoparticle remained intact and stable up to 79.7 ± 1.8 °C. PEGylation of particles reduced uptake by human monocyte-derived macrophages and MDA-MB-231 breast cancer cells, with decreased uptake as PEG chain length is increased. In vitro C4-depletion and C5a-production assays yielded 97.6 ± 10.8% serum C4 remaining and 40.1 ± 6.0 ng/mL C5a for E2-WT, demonstrating that complement activation is weak for non-PEGylated E2 nanoparticles. Conjugation of PEG to these particles moderately increased complement response to give 79.7 ± 6.0% C4 remaining and 87.6 ± 10.1 ng/mL C5a. Our results demonstrate that PEGylation of the E2 protein nanocapsules can modulate cellular uptake and induce low levels of complement activation, likely via the classical/lectin pathways.


Biomacromolecules | 2009

pH-triggered disassembly in a caged protein complex.

Mercè Dalmau; Sierin Lim; Szu-Wen Wang

Self-assembling protein cage structures have many potential applications in nanotechnology, one of which is therapeutic delivery. For intracellular targeting, pH-controlled disassembly of virus-like particles and release of their molecular cargo is particularly strategic. We investigated the potential of using histidines for introducing pH-dependent disassembly in the E2 subunit of pyruvate dehydrogenase. Two subunit interfaces likely to disrupt stability, an intratrimer interface (the N-terminus) and an intertrimer interface (methionine-425), were redesigned. Our results show that changing the identity of the putative anchor site 425 to histidine does not decrease stability. In contrast, engineering non-native pH-dependent behavior and modulating the transition pH at which disassembly occurs can be accomplished by mutagenesis of the N-terminus and by ionic strength changes. The observed pH-triggered disassembly is due to electrostatic repulsions generated by histidine protonation. These results suggest that altering the degree of electrostatic repulsion at subunit interfaces could be a generally applicable strategy for designing pH-triggered assembly in protein macromolecular structures.


Advanced Healthcare Materials | 2014

Modification of Biomaterials with a Self Protein Inhibits the Macrophage Response

Yoon Kyung Kim; Richard A. Que; Szu-Wen Wang; Wendy F. Liu

A biomaterial inhibits the host immune response by displaying an endo-genously expressed immunomodulatory molecule, CD200. Immobilization of CD200 onto biomaterial surfaces effectively suppresses macrophage activation and reduces inflammatory response to subcutaneously implanted materials.


Langmuir | 2010

A Facile Approach for Assembling Lipid Bilayer Membranes on Template-Stripped Gold

Xi Wang; Matthew M. Shindel; Szu-Wen Wang; Regina Ragan

Lipid vesicles are designed with functional chemical groups to promote vesicle fusion on template-stripped gold (TS Au) surfaces that does not spontaneously occur on unfunctionalized Au surfaces. Three types of vesicles were exposed to TS Au surfaces: (1) vesicles composed of only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids; (2) vesicles composed of lipid mixtures of 2.5 mol % of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) and 97.5 mol % of POPC; and (3) vesicles composed of 2.5 mol % of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG) and 97.5 mol % POPC. Atomic force microscopy (AFM) topography and force spectroscopy measurements acquired in a fluid environment confirmed tethered lipid bilayer membrane (tLBM) formation only for vesicles composed of 2.5 mol % DSPE-PEG-PDP/97.5 mol % POPC, thus indicating that the sulfur-containing PDP group is necessary to achieve tLBM formation on TS Au via Au-thiolate bonds. Analysis of force-distance curves for 2.5 mol % DSPE-PEG-PDP/97.5 mol % POPC tLBMs on TS Au yielded a breakthrough distance of 4.8 ± 0.4 nm, which is about 1.7 nm thicker than that of POPC lipid bilayer membrane formed on mica. Thus, the PEG group serves as a spacer layer between the tLBM and the TS Au surface. Fluorescence microscopy results indicate that these tLBMs also have greater mechanical stability than solid-supported lipid bilayer membranes made from the same vesicles on mica. The described process for assembling stable tLBMs on Au surfaces is compatible with microdispensing used in array fabrication.


Biomacromolecules | 2010

Recombinant Human Collagen and Biomimetic Variants Using a De Novo Gene Optimized for Modular Assembly

Sam Wei Polly Chan; She-pin Hung; Senthil Kumar Raman; G. Wesley Hatfield; Richard H. Lathrop; Nancy A. Da Silva; Szu-Wen Wang

A collagen-mimetic polymer that can be easily engineered with specific cell-responsive and mechanical properties would be of significant interest for fundamental cell-matrix studies and applications in regenerative medicine. However, oligonucleotide-based synthesis of full-length collagen has been encumbered by the characteristic glycine-X-Y sequence repetition, which promotes mismatched oligonucleotide hybridizations during de novo gene assembly. In this work, we report a novel, modular synthesis strategy that yields full-length human collagen III and specifically defined variants. We used a computational algorithm that applies codon degeneracy to design oligonucleotides that favor correct hybridizations while disrupting incorrect ones for gene synthesis. The resulting recombinant polymers were expressed in Saccharomyces cerevisiae engineered with prolyl-4-hydroxylase. Our modular approach enabled mixing-and-matching domains to fabricate different combinations of collagen variants that contained different secretion signals at the N-terminus and cysteine residues imbedded within the triple-helical domain at precisely defined locations. This work shows the flexibility of our strategy for designing and assembling specifically tailored biomimetic collagen polymers with re-engineered properties.


Biomaterials | 2016

Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses

Nicholas M. Molino; Medea Neek; Jo Anne Tucker; Edward L. Nelson; Szu-Wen Wang

The immune system is a powerful resource for the eradication of cancer, but to overcome the low immunogenicity of tumor cells, a sufficiently strong CD8(+) T cell-mediated adaptive immune response is required. Nanoparticulate biomaterials represent a potentially effective delivery system for cancer vaccines, as they can be designed to mimic viruses, which are potent inducers of cellular immunity. We have been exploring the non-viral pyruvate dehydrogenase E2 protein nanoparticle as a biomimetic platform for cancer vaccine delivery. Simultaneous conjugation of a melanoma-associated gp100 epitope and CpG to the E2 nanoparticle (CpG-gp-E2) yielded an antigen-specific increase in the CD8(+) T cell proliferation index and IFN-γ secretion by 1.5-fold and 5-fold, respectively, compared to an unbound peptide and CpG formulation. Remarkably, a single nanoparticle immunization resulted in a 120-fold increase in the frequency of melanoma epitope-specific CD8(+) T cells in draining lymph nodes and a 30-fold increase in the spleen, relative to free peptide with free CpG. Furthermore, in the very aggressive B16 melanoma murine tumor model, prophylactic immunization with CpG-gp-E2 delayed the onset of tumor growth by approximately 5.5 days and increased animal survival time by approximately 40%, compared to PBS-treated animals. These results show that by combining optimal particle size and simultaneous co-delivery of molecular vaccine components, antigen-specific anti-tumor immune responses can be significantly increased.

Collaboration


Dive into the Szu-Wen Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Que

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Medea Neek

University of California

View shared research outputs
Top Co-Authors

Avatar

Ali Mohraz

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Mumm

University of California

View shared research outputs
Top Co-Authors

Avatar

Jo Anne Tucker

University of California

View shared research outputs
Top Co-Authors

Avatar

Regina Ragan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge