Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Szymon Kaczanowski is active.

Publication


Featured researches published by Szymon Kaczanowski.


PLOS Biology | 2005

Systematic Association of Genes to Phenotypes by Genome and Literature Mining

Jan O. Korbel; Tobias Doerks; Lars Juhl Jensen; Carolina Perez-Iratxeta; Szymon Kaczanowski; Sean D. Hooper; Miguel A. Andrade; Peer Bork

One of the major challenges of functional genomics is to unravel the connection between genotype and phenotype. So far no global analysis has attempted to explore those connections in the light of the large phenotypic variability seen in nature. Here, we use an unsupervised, systematic approach for associating genes and phenotypic characteristics that combines literature mining with comparative genome analysis. We first mine the MEDLINE literature database for terms that reflect phenotypic similarities of species. Subsequently we predict the likely genomic determinants: genes specifically present in the respective genomes. In a global analysis involving 92 prokaryotic genomes we retrieve 323 clusters containing a total of 2,700 significant gene–phenotype associations. Some clusters contain mostly known relationships, such as genes involved in motility or plant degradation, often with additional hypothetical proteins associated with those phenotypes. Other clusters comprise unexpected associations; for example, a group of terms related to food and spoilage is linked to genes predicted to be involved in bacterial food poisoning. Among the clusters, we observe an enrichment of pathogenicity-related associations, suggesting that the approach reveals many novel genes likely to play a role in infectious diseases.


PLOS Pathogens | 2010

Three Members of the 6-cys Protein Family of /Plasmodium/ Play a Role in Gamete Fertility

Melissa R. van Dijk; Ben C. L. van Schaijk; Shahid M. Khan; Maaike W. van Dooren; Jai Ramesar; Szymon Kaczanowski; Geert-Jan van Gemert; Hans Kroeze; Hendrik G. Stunnenberg; Wijnand Eling; Robert W. Sauerwein; Andrew P. Waters; Chris J. Janse

The process of fertilization is critically dependent on the mutual recognition of gametes and in Plasmodium, the male gamete surface protein P48/45 is vital to this process. This protein belongs to a family of 10 structurally related proteins, the so called 6-cys family. To identify the role of additional members of this family in Plasmodium fertilisation, we performed genetic and functional analysis on the five members of the 6-cys family that are transcribed during the gametocyte stage of P. berghei. This analysis revealed that in addition to P48/45, two members (P230 and P47) also play an essential role in the process of parasite fertilization. Mating studies between parasites lacking P230, P48/45 or P47 demonstrate that P230, like P48/45, is a male fertility factor, consistent with the previous demonstration of a protein complex containing both P48/45 and P230. In contrast, disruption of P47 results in a strong reduction of female fertility, while males remain unaffected. Further analysis revealed that gametes of mutants lacking expression of p48/45 or p230 or p47 are unable to either recognise or attach to each other. Disruption of the paralog of p230, p230p, also specifically expressed in gametocytes, had no observable effect on fertilization. These results indicate that the P. berghei 6-cys family contains a number of proteins that are either male or female specific ligands that play an important role in gamete recognition and/or attachment. The implications of low levels of fertilisation that exist even in the absence of these proteins, indicating alternative pathways of fertilisation, as well as positive selection acting on these proteins, are discussed in the context of targeting these proteins as transmission blocking vaccine candidates.


The Plant Cell | 2005

SWI3 Subunits of Putative SWI/SNF Chromatin-Remodeling Complexes Play Distinct Roles during Arabidopsis Development

Tomasz J. Sarnowski; Gabino Rios; Jan Jasik; Szymon Świeżewski; Szymon Kaczanowski; Yong Li; Aleksandra Kwiatkowska; Katarzyna Pawlikowska; Marta Koźbiał; Piotr Koźbiał; Csaba Koncz; Andrzej Jerzmanowski

SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA–histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four SWI3-like proteins that show remarkable functional diversification. Whereas ATSWI3A and ATSWI3B form homodimers and heterodimers and interact with BSH/SNF5, ATSWI3C, and the flowering regulator FCA, ATSWI3D can only bind ATSWI3B in yeast two-hybrid assays. Mutations of ATSWI3A and ATSWI3B arrest embryo development at the globular stage. By a possible imprinting effect, the atswi3b mutations result in death for approximately half of both macrospores and microspores. Mutations in ATSWI3C cause semidwarf stature, inhibition of root elongation, leaf curling, aberrant stamen development, and reduced fertility. Plants carrying atswi3d mutations display severe dwarfism, alterations in the number and development of flower organs, and complete male and female sterility. These data indicate that, by possible contribution to the combinatorial assembly of different SWI/SNF complexes, the ATSWI3 proteins perform nonredundant regulatory functions that affect embryogenesis and both the vegetative and reproductive phases of plant development.


Plant Physiology | 2005

A Wound-Responsive and Phospholipid-Regulated Maize Calcium-Dependent Protein Kinase

Jadwiga Szczegielniak; Maria Klimecka; Aneta Liwosz; Arkadiusz Ciesielski; Szymon Kaczanowski; Grazyna Dobrowolska; Alice C. Harmon; Grażyna Muszyńska

Using protein sequence data obtained from a calcium- and phospholipid-regulated protein kinase purified from maize (Zea mays), we isolated a cDNA encoding a calcium-dependent protein kinase (CDPK), which we designated ZmCPK11. The deduced amino acid sequence of ZmCPK11 includes the sequences of all the peptides obtained from the native protein. The ZmCPK11 sequence contains the kinase, autoregulatory, and calmodulin-like domains typical of CDPKs. Transcripts for ZmCPK11 were present in every tested organ of the plant, relatively high in seeds and seedlings and lower in stems, roots, and leaves. In leaves, kinase activity and ZmCPK11 mRNA accumulation were stimulated by wounding. The level of ZmCPK11 is also increased in noninjured neighboring leaves. The results suggest that the maize protein kinase is involved in a systemic response to wounding. Bacterially expressed glutathione S-transferase (GST)-ZmCPK11 was catalytically active in a calcium-dependent manner. Like the native enzyme, GST-ZmCPK11 was able to phosphorylate histone III-S and Syntide 2. Phosphorylation of histone was stimulated by phosphatidylserine, phosphatidylinositol, and phosphatidic acid, whereas phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, diolein, and cardiolipin did not increase the enzymatic activity. Autophosphorylation of GST-ZmCPK11 was stimulated by calcium and by phosphatidic acid and, to a lesser extent, by phosphatidylserine. Phosphatidylcholine did not affect autophosphorylation. These data unequivocally identify the maize phospholipid- and calcium-regulated protein kinase, which has protein kinase C-like activity, as a CDPK, and emphasize the potential that other CDPKs are regulated by phospholipids in addition to calcium.


Plant Physiology | 2004

Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress.

Anna Kelner; Izabela Pękala; Szymon Kaczanowski; Grażyna Muszyńska; D. Grahame Hardie; Grażyna Dobrowolska

In tobacco (Nicotiana tabacum), hyperosmotic stress induces rapid activation of a 42-kD protein kinase, referred to as Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK). cDNA encoding the kinase was cloned and, based on the predicted amino acid sequence, the enzyme was assigned to the SNF1-related protein kinase type 2 (SnRK2) family. The identity of the enzyme was confirmed by immunoprecipitation of the active kinase from tobacco cells subjected to osmotic stress using antibodies raised against a peptide corresponding to the C-terminal sequence of the kinase predicted from the cloned cDNA. A detailed biochemical characterization of NtOSAK purified from stressed tobacco cells was performed. Our results show that NtOSAK is a calcium-independent Ser/Thr protein kinase. The sequence of putative phosphorylation sites recognized by NtOSAK, predicted by the computer program PREDIKIN, resembled the substrate consensus sequence defined for animal and yeast (Saccharomyces cerevisiae) AMPK/SNF1 kinases. Our experimental data confirmed these results, as various targets for AMPK/SNF1 kinases were also efficiently phosphorylated by NtOSAK. A range of protein kinase inhibitors was tested as potential modulators of NtOSAK, but only staurosporine, a rather nonspecific protein kinase inhibitor, was found to abolish the enzyme activity. In phosphorylation reactions, NtOSAK exhibited a preference for Mg2+ over Mn2+ ions and an inability to use GTP instead of ATP as a phosphate donor. The enzyme activity was not modulated by 5′-AMP. To our knowledge, these results represent the first detailed biochemical characterization of a kinase of the SnRK2 family.


Environmental Pollution | 2012

The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine.

Lukasz Drewniak; Natalia Maryan; Wiktor Lewandowski; Szymon Kaczanowski; Aleksandra Sklodowska

The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment.


Plant Physiology | 2016

Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1

Malgorzata Cyrek; Halina Fedak; Arkadiusz Ciesielski; Yanwu Guo; Aleksandra Sliwa; Lien Brzezniak; Katarzyna Krzyczmonik; Zbigniew Pietras; Szymon Kaczanowski; Fuquan Liu; Szymon Swiezewski

A major quantitative trait locus is alternatively polyadenylated and its proximally polyadenylated form is required for seed dormancy. DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3′ processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3′ processing complex required for production of proximally polyadenylated functional DOG1 transcript.


Science of The Total Environment | 2013

Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine.

Karolina Tomczyk-Żak; Szymon Kaczanowski; Łukasz Drewniak; Łukasz Dmoch; Aleksandra Sklodowska; Urszula Zielenkiewicz

In this paper we characterize the biofilm community from an ancient Złoty Stok gold and arsenic mine. Bacterial diversity was examined using a culture-independent technique based on 16S rRNA gene amplification, cloning and sequencing. We show that unexpectedly the microbial diversity of this community was extremely high (more than 190 OTUs detected), with the most numerous members from Rhizobiales (α-Proteobacteria). Although the level of rock biofilm diversity was similar to the microbial mat community we have previously characterized in the same adit, its taxonomic composition was completely different. Detailed analysis of functional arrA and aioA genes, chemical properties of siderophores found in pore water as well as the biofilm chemical composition suggest that the biofilm community contributes to arsenic pollution of surrounding water in a biogeochemical cycle similar to the one observed in bacterial mats. To interpret our results concerning the biological arsenic cycle, we applied the theory of ecological pyramids of Charles Elton.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript

Halina Fedak; Malgorzata Palusinska; Katarzyna Krzyczmonik; Lien Brzezniak; Ruslan Yatusevich; Zbigniew Pietras; Szymon Kaczanowski; Szymon Swiezewski

Significance Sequential developmental transitions in plant life cycle are tightly controlled by dynamic regulation of key genes. Seed dormancy release is probably the first developmental transition in a plant’s life cycle, and it is regulated by the Delay of Germination 1 (DOG1) gene. Here we demonstrate that a nonprotein-coding antisense transcript originating from a conserved at DNA—but not protein level—DOG1 region is a negative regulator of DOG1 expression and seed dormancy establishment. We show that this antisense transcript negatively regulates DOG1 expression in cis. This mechanism is presumably conserved across the Brassicaceae, given the evolutionary conservation of the antisense DOG1 promoter. Seed dormancy is one of the most crucial process transitions in a plant’s life cycle. Its timing is tightly controlled by the expression level of the Delay of Germination 1 gene (DOG1). DOG1 is the major quantitative trait locus for seed dormancy in Arabidopsis and has been shown to control dormancy in many other plant species. This is reflected by the evolutionary conservation of the functional short alternatively polyadenylated form of the DOG1 mRNA. Notably, the 3′ region of DOG1, including the last exon that is not included in this transcript isoform, shows a high level of conservation at the DNA level, but the encoded polypeptide is poorly conserved. Here, we demonstrate that this region of DOG1 contains a promoter for the transcription of a noncoding antisense RNA, asDOG1, that is 5′ capped, polyadenylated, and relatively stable. This promoter is autonomous and asDOG1 has an expression profile that is different from known DOG1 transcripts. Using several approaches we show that asDOG1 strongly suppresses DOG1 expression during seed maturation in cis, but is unable to do so in trans. Therefore, the negative regulation of seed dormancy by asDOG1 in cis results in allele-specific suppression of DOG1 expression and promotes germination. Given the evolutionary conservation of the asDOG1 promoter, we propose that this cis-constrained noncoding RNA-mediated mechanism limiting the duration of seed dormancy functions across the Brassicaceae.


Journal of Molecular Evolution | 2001

Evolutionary Correlation Between Linker Histones and Microtubular Structures

Szymon Kaczanowski; Andrzej Jerzmanowski

Abstract. Histones of the H1 group (linker histones) are abundant components of chromatin in eukaryotes, occurring on average at one molecule per nucleosome. The recent reports on the lack of a clear phenotypic effect of knock-out mutations as well as overexpression of histone H1 genes in different organisms have seriously undermined the long-held view that linker histones are essential for the basic functions of eukaryotic cells. In an attempt to resolve the paradox of an abundant conserved protein without a clear function, we re-examined the molecular and phylogenetic data on linker histones to see if they could reveal any correlation between the features of H1 and the functional or morphological characteristics of cells or organisms. Because of an earlier demonstration that in sea urchin the chromatin-type histone H1 is also found in the flagellar microtubules (Multigner et al. 1992), we focused on the correlation between the features of H1 and those of microtubular structures. A phylogenetic tree based on multiple alignment of over 100 available H1 sequences suggests that the first divergence of the globular domain of H1 (GH1) resulted in branching into separate types characteristic for plants/Dictyostelium and for animals/ascomycetes, respectively. The GH1s of these two types differ by a short region (usually 5 amino acids) placed at a specific location within the C-terminal wing subdomain of GH1. Evolutionary analysis of the diversification of H1 mRNA into cell-cycle-dependent (polyA−) and independent (polyA+) forms showed a mosaic occurrence of these two forms in plants and animals, despite the fact that the H1 proteins of plants and animals belong to two well-distinguished groups. However, among organisms from both animal and plant kingdom, only those with H1 mRNA of a polyA− type have flagellated gametes. This correlation as well as the demonstration that in Volvox carteri the accumulation of polyA− mRNA of H1 occurs concurrently with the production of new flagella (Lindauer et al. 1993), suggests a direct link between polyA− phenotype of histone H1 mRNA and flagellogenesis.

Collaboration


Dive into the Szymon Kaczanowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arkadiusz Gladki

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge