T. A. Naikoo
University of Kashmir
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. A. Naikoo.
Journal of Applied Mathematics and Computing | 2007
S. Pirzada; T. A. Naikoo; N. A. Shah
AbstractAn oriented graph is a digraph with no symmetric pairs of directed arcs and without loops. The score of a vertexvi in an oriented graph D is
Journal of Applied Mathematics and Computing | 2006
S. Pirzada; T. A. Naikoo
Graphs and Combinatorics | 2007
S. Pirzada; T. A. Naikoo; Zhou Guofei
a_{v_i }
Czechoslovak Mathematical Journal | 2007
S. Pirzada; T. A. Naikoo; F. A. Dar
arXiv: Combinatorics | 2010
S. Pirzada; T. A. Naikoo; U. Samee; Antal Iványi
(or simply ai)
Applicable Analysis and Discrete Mathematics | 2008
S. Pirzada; T. A. Naikoo
Journal of Applied Mathematics and Computing | 2006
S. Pirzada; T. A. Naikoo
d_{v_i }^ -
Applicable Analysis and Discrete Mathematics | 2008
S. Pirzada; T. A. Naikoo; F. A. Dar
arXiv: Combinatorics | 2006
S. Pirzada; T. A. Naikoo; F. A. Dar
are the outdegree and indegree, respectively, ofvi and n is the number of vertices in D. In this paper, we give a new proof of Avery’s theorem and obtain some stronger inequalities for scores in oriented graphs. We also characterize strongly transitive oriented graphs.
Diskretnaya Matematika | 2010
Ш Пирзада; S. Pirzada; Т А Чишти; Tariq A. Chishti; Т А Наику; T. A. Naikoo
The set S of distinct scores (outdegrees) of the vertices of ak-partite tournamentT(X1, X2, ···, Xk) is called its score set. In this paper, we prove that every set of n non-negative integers, except {0} and {0, 1}, is a score set of some 3-partite tournament. We also prove that every set ofn non-negative integers is a score set of somek-partite tournament for everyn ≥k ≥ 2.