Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. A. Perera is active.

Publication


Featured researches published by T. A. Perera.


Monthly Notices of the Royal Astronomical Society | 2011

AzTEC/ASTE 1.1-mm survey of the AKARI Deep Field South: source catalogue and number counts

Bunyo Hatsukade; Kotaro Kohno; I. Aretxaga; J. E. Austermann; H. Ezawa; David H. Hughes; Soh Ikarashi; Daisuke Iono; Ryohei Kawabe; S. Khan; Hiroshi Matsuo; Shuji Matsuura; K. Nakanishi; Tai Oshima; T. A. Perera; K. S. Scott; Mai Shirahata; Tsutomu T. Takeuchi; Yoichi Tamura; Kunihiko Tanaka; Tomoka Tosaki; Graham Wallace Wilson; M. S. Yun

We present the first results of a deep 1.1-mm survey of the AKARI Deep Field-South (ADF-S) with the AzTEC camera on the Atacama Submillimetre Telescope Experiment (ASTE ). This survey covers ∼400 arcmin, of which the central 202 arcmin is a uniform low-noise region with an rms noise level of 0.48–0.71 mJy. This is one of the deepest surveys at 1-mm wavelength, to cover such a large contiguous region. We detected 37 sources with a significance of 3.5–10 σ. The expected number of false detections at ≥3.5 σ is at most one, indicating that the detected sources are highly reliable. We construct differential and cumulative number counts and find a difference in number counts among 1-mm blank field surveys: the number counts of the ADF-S are less than those of GOODS-N and COSMOS fields. Most of the sources are not detected in the far-infrared bands of the AKARI, suggesting that they lie mostly at z ∼ > 1 given the detection limits. In this survey, about 10% of cosmic infrared background at 1.1 mm is resolved into discrete sources.


Physical Review Letters | 2006

Limits on Spin-Independent Interactions of Weakly Interacting Massive Particles with Nucleons from the Two-Tower Run of the Cryogenic Dark Matter Search

D. S. Akerib; M. J. Attisha; C. N. Bailey; L. Baudis; D. A. Bauer; P. L. Brink; P.P. Brusov; R. Bunker; B. Cabrera; David O. Caldwell; C.L. Chang; J. Cooley; M. B. Crisler; P. Cushman; M. Daal; R. Dixon; M.R. Dragowsky; D. Driscoll; L. Duong; R. Ferril; J. Filippini; R.J. Gaitskell; S. R. Golwala; D. R. Grant; R. Hennings-Yeomans; D. Holmgren; M. E. Huber; S. Kamat; S. Leclercq; A. Lu

We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 kg-d for germanium and 12 kg-d for silicon targets after cuts, averaged over recoil energies 10-100 keV for a WIMP mass of 60 GeV. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10^{-43} cm^2 from Ge, and 3 x 10^{-42} cm^2 from Si, for a WIMP mass of 60 GeV. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results, and constrains predictions of supersymmetric models.


Physical Review Letters | 2000

Exclusion limits on the WIMP-nucleon cross section from the cryogenic dark matter search.

R. Abusaidi; D. S. Akerib; P. D. Barnes; D. A. Bauer; A. Bolozdynya; P. L. Brink; R. Bunker; B. Cabrera; David O. Caldwell; J. P. Castle; R. M. Clarke; P. Colling; M. B. Crisler; A. C. Cummings; Da Silva A; A. K. Davies; R. Dixon; B. L. Dougherty; D. Driscoll; S. Eichblatt; J. Emes; R.J. Gaitskell; Golwala; Daniel E. Hale; E. E. Haller; J. Hellmig; M. E. Huber; K. D. Irwin; J. Jochum; F. P. Lipschultz

The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. CDMS data give limits on the spin-independent WIMP-nucleon elastic-scattering cross-section that exclude unexplored parameter space above 10 GeV c^{-2} WIMP mass and, at>84% CL, the entire 3


Physical Review Letters | 2004

First Results from the Cryogenic Dark Matter Search in the Soudan Underground Laboratory

D. S. Akerib; J. Alvaro-Dean; M. S. Armel-Funkhouser; M. J. Attisha; L. Baudis; D. A. Bauer; J. Beaty; P. L. Brink; R. Bunker; S. Burke; B. Cabrera; David O. Caldwell; D. Callahan; J. P. Castle; C.L. Chang; R. Choate; M. B. Crisler; P. Cushman; R. Dixon; M.R. Dragowsky; D. Driscoll; L. Duong; J. Emes; R. Ferril; J. P. Filippini; R.J. Gaitskell; M. Haldeman; Daniel E. Hale; D. Holmgren; M. E. Huber

\sigma


Monthly Notices of the Royal Astronomical Society | 2008

AzTEC millimetre survey of the COSMOS field - I. Data reduction and source catalogue

K. S. Scott; J. E. Austermann; T. A. Perera; Graham Wallace Wilson; I. Aretxaga; J. J. Bock; David H. Hughes; Young-Woon Kang; Sungeun Kim; Philip Daniel Mauskopf; David B. Sanders; N. Z. Scoville; Min S. Yun

allowed region for the WIMP signal reported by the DAMA experiment.


Monthly Notices of the Royal Astronomical Society | 2008

The AzTEC mm-wavelength camera

Grant W. Wilson; J. E. Austermann; T. A. Perera; K. S. Scott; Peter A. R. Ade; J. J. Bock; J. Glenn; S. R. Golwala; Sungeun Kim; Young-Woon Kang; D. Lydon; Philip Daniel Mauskopf; C. R. Predmore; C. Roberts; Kamal Souccar; Min S. Yun

We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg-d of Ge net exposure after cuts for recoil energies between 10--100 keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. Using the standard dark-matter halo and nuclear-physics WIMP model, these data set the worlds lowest exclusion limits on the coherent WIMP-nucleon scalar cross-section for all WIMP masses above 15 GeV, ruling out a significant range of neutralino supersymmetric models. The minimum of this limit curve at the 90% C.L. is 4 x 10^{-43} cm^2 at a WIMP mass of 60 GeV.


Monthly Notices of the Royal Astronomical Society | 2010

AzTEC half square degree survey of the SHADES fields - I. Maps, catalogues and source counts

J. E. Austermann; James Dunlop; T. A. Perera; K. S. Scott; Grant W. Wilson; I. Aretxaga; David H. Hughes; Omar Almaini; Edward L. Chapin; S. C. Chapman; Michele Cirasuolo; D. L. Clements; K. E. K. Coppin; Loretta Dunne; Simon Dye; Stephen Anthony Eales; E. Egami; D. Farrah; D. Ferrusca; Stephen Flynn; D. Haig; M. Halpern; E. Ibar; R. J. Ivison; E. van Kampen; Young-Woon Kang; Sungeun Kim; Cedric G. Lacey; James D. Lowenthal; Philip Daniel Mauskopf

We present a 1.1mm wavelength imaging survey covering 0.3 deg^2 in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope, were centred on a prominent large-scale structure overdensity which includes a rich X-ray cluster at z ≈ 0.73. A total of 50 mm-galaxy candidates, with a significance ranging from 3.5 to 8.5σ, are extracted from the central 0.15 deg^2 area which has a uniform sensitivity of ∼1.3 mJy beam^−1. 16 sources are detected with S/N ≥ 4.5, where the expected false detection rate is zero, of which a surprisingly large number (9) have intrinsic (deboosted) fluxes ≥5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically obscured stars, then these bright AzTEC sources have far-infrared luminosities >6 × 10^(12)L_☉ and star formation rates ≥1100M_☉ yr^(−1). Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray cluster, whilst the remainder are distributed across the larger scale overdensity. We describe the AzTEC data reduction pipeline, the source-extraction algorithm, and the characterization of the source catalogue, including the completeness, flux deboosting correction, false-detection rate and the source positional uncertainty, through an extensive set of Monte Carlo simulations. We conclude with a preliminary comparison, via a stacked analysis, of the overlapping MIPS 24-μm data and radio data with this AzTEC map of the COSMOS field.


Monthly Notices of the Royal Astronomical Society | 2008

An AzTEC 1.1 mm survey of the GOODS-N field - I. Maps, catalogue and source statistics

T. A. Perera; Edward L. Chapin; J. E. Austermann; K. S. Scott; Graham Wallace Wilson; M. Halpern; Alexandra Pope; Douglas Scott; M. S. Yun; James D. Lowenthal; G. Morrison; I. Aretxaga; J. J. Bock; K. E. K. Coppin; Malcolm K. Crowe; Leo Frey; David H. Hughes; Young-Woon Kang; Sungeun Kim; Philip Daniel Mauskopf

AzTEC is a mm-wavelength bolometric camera utilizing 144 silicon nitride micromesh detectors. Here, we describe the AzTEC instrument architecture and its use as an astronomical instrument. We report on several performance metrics measured during a three-month observing campaign at the James Clerk Maxwell Telescope and conclude with our plans for AzTEC as a facility instrument on the Large Millimetre Telescope.


The Astrophysical Journal | 2009

THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

Joshua D. Younger; Giovanni G. Fazio; Jia-Sheng Huang; Min S. Yun; Grant W. Wilson; Matthew L. N. Ashby; M. A. Gurwell; Alison B. Peck; G. Petitpas; David J. Wilner; David H. Hughes; Itziar Aretxaga; Sungeun Kim; K. S. Scott; J. E. Austermann; T. A. Perera; James D. Lowenthal

We present the first results from the largest deep extragalactic mm-wavelength survey undertaken to date. These results are derived from maps covering over 0.7 deg2, made at λ= 1.1 mm, using the AzTEC continuum camera mounted on the James Clerk Maxwell Telescope. The maps were made in the two fields originally targeted at λ= 850 μm with the Submillimetre Common-User Bolometer Array (SCUBA) in the SCUBA Half-Degree Extragalactic Survey (SHADES) project, namely the Lockman Hole East (mapped to a depth of 0.9–1.3 mJy rms) and the Subaru/XMM–Newton Deep Field (mapped to a depth of 1.0–1.7 mJy rms). The wealth of existing and forthcoming deep multifrequency data in these two fields will allow the bright mm source population revealed by these new wide-area 1.1 mm images to be explored in detail in subsequent papers. Here, we present the maps themselves, a catalogue of 114 high-significance submillimetre galaxy detections, and a thorough statistical analysis leading to the most robust determination to date of the 1.1 mm source number counts. These new maps, covering an area nearly three times greater than the SCUBA SHADES maps, currently provide the largest sample of cosmological volumes of the high-redshift Universe in the mm or sub-mm. Through careful comparison, we find that both the Cosmic Evolution Survey (COSMOS) and the Great Observatories Origins Deep Survey (GOODS) North fields, also imaged with AzTEC, contain an excess of mm sources over the new 1.1 mm source-count baseline established here. In particular, our new AzTEC/SHADES results indicate that very luminous high-redshift dust enshrouded starbursts (S1.1mm > 3 mJy) are 25–50 per cent less common than would have been inferred from these smaller surveys, thus highlighting the potential roles of cosmic variance and clustering in such measurements. We compare number count predictions from recent models of the evolving mm/sub-mm source population to these sub-mm bright galaxy surveys, which provide important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation, and find that all available models overpredict the number of bright submillimetre galaxies found in this survey.


Monthly Notices of the Royal Astronomical Society | 2010

Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE – I. Source catalogue and number counts

K. S. Scott; Min S. Yun; Graham Wallace Wilson; J. E. Austermann; E. Aguilar; Itziar Aretxaga; Hajime Ezawa; D. Ferrusca; Bunyo Hatsukade; David H. Hughes; Daisuke Iono; Mauro Giavalisco; Ryohei Kawabe; Kotaro Kohno; Philip Daniel Mauskopf; Tai Oshima; T. A. Perera; J. Rand; Yoichi Tamura; Tomoka Tosaki; M. Velazquez; Christina C. Williams; M. Zeballos

We have conducted a deep and uniform 1.1 mm survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field with AzTEC on the James Clerk Maxwell Telescope. Here, we present the first results from this survey including maps, the source catalogue and 1.1 mm number counts. The results presented here were obtained from a 245 arcmin2 region with a near uniform coverage to a depth of 0.96–1.16 mJy beam−1. Our robust catalogue contains 28 source candidates detected with S/N ≥ 3.75, only ∼1– 2 of which are expected to be spurious detections. Of these source candidates, eight are also detected by Submillimetre Common-User Bolometer Array (SCUBA) at 850 μm in regions where there is a good overlap between the two surveys. The major advantage of our survey over that with SCUBA is the uniformity of coverage. We calculate number counts using two different techniques: the first using a frequentist parameter estimation and the second using a Bayesian method. The two sets of results are in good agreement. We find that the 1.1 mm differential number counts are well described in the 2–6 mJy range by the functional form dN/dS=N′(S′/S) exp(−S/S′) with fitted parameters S′= 1.25 ± 0.38 mJy and dN/dS= 300 ± 90 mJy−1 deg−2 at 3 mJy.

Collaboration


Dive into the T. A. Perera's collaboration.

Top Co-Authors

Avatar

J. E. Austermann

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

K. S. Scott

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Grant W. Wilson

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

D. S. Akerib

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Hughes

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. L. Brink

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Driscoll

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge