Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Banzon is active.

Publication


Featured researches published by T. Banzon.


Investigative Ophthalmology & Visual Science | 2008

Control of Chemokine Gradients by the Retinal Pigment Epithelium

Guangpu Shi; Arvydas Maminishkis; T. Banzon; S. Jalickee; Rong Li; Jeffrey A. Hammer; Sheldon S. Miller

PURPOSE Proinflammatory cytokines in degenerative diseases can lead to the loss of normal physiology and the destruction of surrounding tissues. In the present study, the physiological responses of human fetal retinal pigment epithelia (hfRPE) were examined in vitro after polarized activation of proinflammatory cytokine receptors. METHODS Primary cultures of hfRPE were stimulated with an inflammatory cytokine mixture (ICM): interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. Western blot analysis and immunofluorescence were used to determine the expression/localization of the cytokine receptors on hfRPE. Polarized secretion of cytokines was measured. A capacitance probe technique was used to measure transepithelial fluid flow (J(V)) and resistance (R(T)). RESULTS IL-1R1 was mainly localized to the apical membrane and TNFR1 to the basal membrane, whereas IFN-gammaR1 was detected on both membranes. Activation by apical ICM induced a significant secretion of angiogenic and angiostatic chemokines, mainly across the hfRPE apical membrane. Addition of the ICM to the basal but not the apical bath significantly increased net fluid absorption (J(V)) across the hfRPE within 20 minutes. Similar increases in J(V) were produced by a 24-hour exposure to ICM, which significantly decreased total R(T). CONCLUSIONS Chemokine gradients across the RPE can be altered (1) through an ICM-induced change in polarized chemokine secretion and (2) through an increase in ICM-induced net fluid absorption. In vivo, both of these factors could contribute to the development of chemokine gradients that help mediate the progression of inflammation/angiogenesis at the retina/RPE/choroid complex.


The Journal of General Physiology | 2009

CO2-induced ion and fluid transport in human retinal pigment epithelium.

Jeffrey Adijanto; T. Banzon; Stephen Jalickee; Nam S. Wang; Sheldon S. Miller

In the intact eye, the transition from light to dark alters pH, [Ca2+], and [K] in the subretinal space (SRS) separating the photoreceptor outer segments and the apical membrane of the retinal pigment epithelium (RPE). In addition to these changes, oxygen consumption in the retina increases with a concomitant release of CO2 and H2O into the SRS. The RPE maintains SRS pH and volume homeostasis by transporting these metabolic byproducts to the choroidal blood supply. In vitro, we mimicked the transition from light to dark by increasing apical bath CO2 from 5 to 13%; this maneuver decreased cell pH from 7.37 ± 0.05 to 7.14 ± 0.06 (n = 13). Our analysis of native and cultured fetal human RPE shows that the apical membrane is significantly more permeable (≈10-fold; n = 7) to CO2 than the basolateral membrane, perhaps due to its larger exposed surface area. The limited CO2 diffusion at the basolateral membrane promotes carbonic anhydrase–mediated HCO3 transport by a basolateral membrane Na/nHCO3 cotransporter. The activity of this transporter was increased by elevating apical bath CO2 and was reduced by dorzolamide. Increasing apical bath CO2 also increased intracellular Na from 15.7 ± 3.3 to 24.0 ± 5.3 mM (n = 6; P < 0.05) by increasing apical membrane Na uptake. The CO2-induced acidification also inhibited the basolateral membrane Cl/HCO3 exchanger and increased net steady-state fluid absorption from 2.8 ± 1.6 to 6.7 ± 2.3 µl × cm−2 × hr−1 (n = 5; P < 0.05). The present experiments show how the RPE can accommodate the increased retinal production of CO2 and H2O in the dark, thus preventing acidosis in the SRS. This homeostatic process would preserve the close anatomical relationship between photoreceptor outer segments and RPE in the dark and light, thus protecting the health of the photoreceptors.


American Journal of Physiology-cell Physiology | 2009

IFNγ regulates retinal pigment epithelial fluid transport

Rong Li; Arvydas Maminishkis; T. Banzon; Qin Wan; Stephen Jalickee; Shan Chen; Sheldon S. Miller

The present experiments show that IFNgamma receptors are mainly localized to the basolateral membrane of human retinal pigment epithelium (RPE). Activation of these receptors in primary cultures of human fetal RPE inhibited cell proliferation and migration, decreased RPE mitochondrial membrane potential, altered transepithelial potential and resistance, and significantly increased transepithelial fluid absorption. These effects are mediated through JAK-STAT and p38 MAPK signaling pathways. Second messenger signaling through cAMP-PKA pathway- and interferon regulatory factor-1-dependent production of nitric oxide/cGMP stimulated the CFTR at the basolateral membrane and increased transepithelial fluid absorption. In vivo experiments using a rat model of retinal reattachment showed that IFNgamma applied to the anterior surface of the eye can remove extra fluid deposited in the extracellular or subretinal space between the retinal photoreceptors and RPE. Removal of this extra fluid was blocked by a combination of PKA and JAK-STAT pathway inhibitors injected into the subretinal space. These results demonstrate a protective role for IFNgamma in regulating retinal hydration across the outer blood-retinal barrier in inflammatory disease processes and provide the basis for possible therapeutic interventions.


PLOS ONE | 2011

CNTF Mediates Neurotrophic Factor Secretion and Fluid Absorption in Human Retinal Pigment Epithelium

Rong Li; Rong Wen; T. Banzon; Arvydas Maminishkis; Sheldon S. Miller

Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTFs effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase). CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFβ2. It also significantly increases fluid absorption (J V) across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruchs membrane complex and provide protection against neurodegenerative disease.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Flagellin-stimulated Cl− secretion and innate immune responses in airway epithelia: role for p38

Beate Illek; Zhu Fu; Christian Schwarzer; T. Banzon; Stephen Jalickee; Sheldon S. Miller; Terry E. Machen

Activation of an innate immune response in airway epithelia by the human pathogen Pseudomonas aeruginosa requires bacterial expression of flagellin. Addition of flagellin (10(-7) M) to airway epithelial cell monolayers (Calu-3, airway serous cell-like) increased Cl(-) secretion (I(Cl)) beginning after 3-10 min, reaching a plateau after 20-45 min at DeltaI(Cl) = 15-50 microA/cm(2). Similar, although 10-fold smaller, responses were observed in well-differentiated bronchial epithelial cultures. Flagellin stimulated I(Cl) in the presence of maximally stimulating doses of the purinergic agonist ATP, but had no effects following forskolin. IL-1beta (produced by both epithelia and neutrophils during infections) stimulated I(Cl) similar to flagellin. Flagellin-, IL-1beta-, ATP-, and forskolin-stimulated I(Cl) were inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) blockers GlyH101, CFTRinh172, and glibenclamide. Neither flagellin nor IL-1beta altered transepithelial fluxes of membrane-impermeant dextran (10 kDa) or lucifer yellow (mol wt = 457), but both activated p38, NF-kappaB, and IL-8 secretion. Blockers of p38 (SB-202190 and SB-203580) reduced flagellin- and IL-1beta-stimulated I(Cl) by 33-50% but had smaller effects on IL-8 and NF-kappaB. It is concluded that: 1) flagellin and IL-1beta activated p38, NF-kappaB, IL-8, and CFTR-dependent anion secretion without altering tight junction permeability; 2) p38 played a role in regulating I(Cl) and IL-8 but not NF-kappaB; and 3) p38 was more important in flagellin- than IL-1beta-stimulated responses. During P. aeruginosa infections, flagellin and IL-1beta are expected to increase CFTR-dependent ion and fluid flow into and bacterial clearance from the airways. In cystic fibrosis, the secretory response would be absent, but activation of p38, NF-kappaB, and IL-8 would persist.


Investigative Ophthalmology & Visual Science | 2015

Human Adult Retinal Pigment Epithelial Stem Cell-Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native Tissue.

Timothy A. Blenkinsop; Janmeet S. Saini; Arvydas Maminishkis; Kapil Bharti; Qin Wan; T. Banzon; Mostafa Reza Lotfi; Janine Davis; Deepti Singh; Lawrence J. Rizzolo; Sheldon S. Miller; Sally Temple; Jeffrey H. Stern

PURPOSE We tested what native features have been preserved with a new culture protocol for adult human RPE. METHODS We cultured RPE from adult human eyes. Standard protocols for immunohistochemistry, electron microscopy, electrophysiology, fluid transport, and ELISA were used. RESULTS Confluent monolayers of adult human RPE cultures exhibit characteristics of native RPE. Immunohistochemistry demonstrated polarized expression of RPE markers. Electron microscopy illustrated characteristics of native RPE. The mean transepithelial potential (TEP) was 1.19 ± 0.24 mV (mean ± SEM, n = 31), apical positive, and the mean transepithelial resistance (RT) was 178.7 ± 9.9 Ω·cm2 (mean ± SEM, n = 31). Application of 100 μM adenosine triphosphate (ATP) apically increased net fluid absorption (Jv) by 6.11 ± 0.53 μL·cm2·h-1 (mean ± SEM, n = 6) and TEP by 0.33 ± 0.048 mV (mean ± SEM, n = 25). Gene expression of cultured RPE was comparable to native adult RPE (n = 5); however, native RPE RNA was harvested between 24 and 40 hours after death and, therefore, may not accurately reflect healthy native RPE. Vascular endothelial growth factor secreted preferentially basally 2582 ± 146 pg/mL/d, compared to an apical secretion of 1548 ± 162 pg/mL/d (n = 14, P < 0.01), while PEDF preferentially secreted apically 1487 ± 280 ng/mL/d compared to a basolateral secretion of 864 ± 132 ng/mL/d (n = 14, P < 0.01). CONCLUSIONS The new culture model preserves native RPE morphology, electrophysiology, and gene and protein expression patterns, and may be a useful model to study RPE physiology, disease, and transplantation.


Investigative Ophthalmology & Visual Science | 2006

Confluent Monolayers of Cultured Human Fetal Retinal Pigment Epithelium Exhibit Morphology and Physiology of Native Tissue

Arvydas Maminishkis; Shan Chen; S. Jalickee; T. Banzon; Guangpu Shi; F. Wang; Todd Ehalt; Jeffrey A. Hammer; Sheldon S. Miller


Investigative Ophthalmology & Visual Science | 2007

IFN Inhibits Cell Proliferation and Migration in Human Fetal Retinal Pigment Epithelium (hfRPE)

Rong Li; Arvydas Maminishkis; T. Banzon; Sheldon S. Miller


Investigative Ophthalmology & Visual Science | 2007

Membrane-Bound Carbonic Anhydrases in Human Fetal Retinal Pigment Epithelial Cells (hfRPE)

C. Zhi; F. Wang; T. Banzon; S. Jalickee; Robert N. Fariss; Arvydas Maminishkis; Sheldon S. Miller


Investigative Ophthalmology & Visual Science | 2006

Localization, Expression and Function of Carbonic Anhydrases in Human Fetal Retinal Pigment Epithelial (hfRPE) Cell Cultures and Native Bovine RPE (nbRPE)

C. Zhi; F. Wang; F. Boudreault; T. Banzon; S. Jalickee; Robert N. Fariss; Arvydas Maminishkis; Sheldon S. Miller

Collaboration


Dive into the T. Banzon's collaboration.

Top Co-Authors

Avatar

Sheldon S. Miller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arvydas Maminishkis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

S. Jalickee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rong Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Adijanto

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Qin Wan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shan Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

C. Zhi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

F. Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Guangpu Shi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge