T. Daniel Andrews
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Daniel Andrews.
Nature | 2006
Richard Redon; Shumpei Ishikawa; Karen R. Fitch; Lars Feuk; George H. Perry; T. Daniel Andrews; Heike Fiegler; Michael H. Shapero; Andrew R. Carson; Wenwei Chen; Eun Kyung Cho; Stephanie Dallaire; Jennifer L. Freeman; Juan R. González; Mònica Gratacòs; Jing Huang; Dimitrios Kalaitzopoulos; Daisuke Komura; Jeffrey R. MacDonald; Christian R. Marshall; Rui Mei; Lyndal Montgomery; Keunihiro Nishimura; Kohji Okamura; Fan Shen; Martin J. Somerville; Joelle Tchinda; Armand Valsesia; Cara Woodwark; Fengtang Yang
Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
Nature | 2010
Donald F. Conrad; Dalila Pinto; Richard Redon; Lars Feuk; Omer Gokcumen; Yujun Zhang; Jan Aerts; T. Daniel Andrews; C. Barnes; Peter J. Campbell; Tomas Fitzgerald; Min Hu; Chun Hwa Ihm; Kati Kristiansson; Daniel G. MacArthur; Jeffrey R. MacDonald; Ifejinelo Onyiah; Andy Wing Chun Pang; Samuel Robson; Kathy Stirrups; Armand Valsesia; Klaudia Walter; John T. Wei; Chris Tyler-Smith; Nigel P. Carter; Charles Lee; Stephen W. Scherer
Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.
Nature Genetics | 2006
Donald F. Conrad; T. Daniel Andrews; Nigel P. Carter; Jonathan K. Pritchard
Recent work has shown that copy number polymorphism is an important class of genetic variation in human genomes. Here we report a new method that uses SNP genotype data from parent-offspring trios to identify polymorphic deletions. We applied this method to data from the International HapMap Project to produce the first high-resolution population surveys of deletion polymorphism. Approximately 100 of these deletions have been experimentally validated using comparative genome hybridization on tiling-resolution oligonucleotide microarrays. Our analysis identifies a total of 586 distinct regions that harbor deletion polymorphisms in one or more of the families. Notably, we estimate that typical individuals are hemizygous for roughly 30–50 deletions larger than 5 kb, totaling around 550–750 kb of euchromatic sequence across their genomes. The detected deletions span a total of 267 known and predicted genes. Overall, however, the deleted regions are relatively gene-poor, consistent with the action of purifying selection against deletions. Deletion polymorphisms may well have an important role in the genetics of complex traits; however, they are not directly observed in most current gene mapping studies. Our new method will permit the identification of deletion polymorphisms in high-density SNP surveys of trio or other family data.
Genome Biology | 2014
Vicky Cho; Yan Mei; Arleen Sanny; Stephanie S Y Chan; Anselm Enders; Edward M. Bertram; Andy Tan; Christopher C. Goodnow; T. Daniel Andrews
BackgroundRetention of a subset of introns in spliced polyadenylated mRNA is emerging as a frequent, unexplained finding from RNA deep sequencing in mammalian cells.ResultsHere we analyze intron retention in T lymphocytes by deep sequencing polyadenylated RNA. We show a developmentally regulated RNA-binding protein, hnRNPLL, induces retention of specific introns by sequencing RNA from T cells with an inactivating Hnrpll mutation and from B lymphocytes that physiologically downregulate Hnrpll during their differentiation. In Ptprc mRNA encoding the tyrosine phosphatase CD45, hnRNPLL induces selective retention of introns flanking exons 4 to 6; these correspond to the cassette exons containing hnRNPLL binding sites that are skipped in cells with normal, but not mutant or low, hnRNPLL. We identify similar patterns of hnRNPLL-induced differential intron retention flanking alternative exons in 14 other genes, representing novel elements of the hnRNPLL-induced splicing program in T cells. Retroviral expression of a normally spliced cDNA for one of these targets, Senp2, partially corrects the survival defect of Hnrpll-mutant T cells. We find that integrating a number of computational methods to detect genes with differentially retained introns provides a strategy to enrich for alternatively spliced exons in mammalian RNA-seq data, when complemented by RNA-seq analysis of purified cells with experimentally perturbed RNA-binding proteins.ConclusionsOur findings demonstrate that intron retention in mRNA is induced by specific RNA-binding proteins and suggest a biological significance for this process in marking exons that are poised for alternative splicing.
Journal of Molecular Evolution | 1998
T. Daniel Andrews; Lars S. Jermiin; Simon Easteal
Abstract We have sequenced the cytochrome b gene of Horsfields tarsier, Tarsius bancanus, to complete a data set of sequences for this gene from representatives of each primate infraorder. These primate cytochrome b sequences were combined with those from representatives of three other mammalian orders (cat, whale, and rat) in an analysis of relative evolutionary rates. The nonsynonymous nucleotide substitution rate of the cytochrome b gene has increased approximately twofold along lineages leading to simian primates compared to that of the tarsier and other primate and nonprimate mammalian species. However, the rate of transversional substitutions at fourfold degenerate sites has remained uniform among all lineages. This increase in the evolutionary rate of cytochrome b is similar in character and magnitude to that described previously for the cytochrome c oxidase subunit II gene. We propose that the evolutionary rate increase observed for cytochrome b and cytochrome c oxidase subunit II may underlie an episode of coadaptive evolution of these two proteins in the mitochondria of simian primates.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Lisa A. Miosge; Matthew A. Field; Yovina Sontani; Vicky Cho; Simon A. Johnson; Anna Palkova; Bhavani Balakishnan; Rong Liang; Yafei Zhang; Stephen Lyon; Bruce Beutler; Belinda Whittle; Edward M. Bertram; Anselm Enders; Christopher C. Goodnow; T. Daniel Andrews
Significance Computational tools applied to any human genome sequence identify hundreds of genetic variants predicted to disrupt the function of individual proteins as the result of a single codon change. These tools have been trained on disease mutations and common polymorphisms but have yet to be tested against an unbiased spectrum of random mutations arising de novo. Here we perform such a test comparing the predicted and actual effects of de novo mutations in 23 genes with essential functions for normal immunity and all possible mutations in the TP53 tumor suppressor gene. These results highlight an important gap in our ability to relate genotype to phenotype in clinical genome sequencing: the inability to differentiate immediately clinically relevant mutations from nearly neutral mutations. Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea–treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
Genetics | 2004
T. Daniel Andrews; Takashi Gojobori
The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow “parallelized” evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.
Journal of Experimental Medicine | 2013
Hannes Bergmann; Mehmet Yabas; Alanna Short; Lisa A. Miosge; Nadine Barthel; Charis E. Teh; Carla M. Roots; Katherine R. Bull; Yogesh S. Jeelall; Keisuke Horikawa; Belinda Whittle; Bhavani Balakishnan; Geoff Sjollema; Edward M. Bertram; Fabienne Mackay; Andrew J. Rimmer; Richard J. Cornall; Matthew A. Field; T. Daniel Andrews; Christopher C. Goodnow; Anselm Enders
Mice lacking activity of the intramembrane protease SPPL2A exhibit humoral immunodeficiency and lack mature B cell subsets.
eLife | 2013
Stephen R. Daley; Kristen Coakley; Daniel Y. Hu; Katrina L. Randall; Craig N. Jenne; Andre Limnander; Darienne R. Myers; Noelle K Polakos; Anselm Enders; Carla M. Roots; Bhavani Balakishnan; Lisa A. Miosge; Geoff Sjollema; Edward M. Bertram; Matthew A. Field; Yunli Shao; T. Daniel Andrews; Belinda Whittle; S. Whitney Barnes; John R. Walker; Jason G. Cyster; Christopher C. Goodnow; Jeroen P. Roose
Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1Anaef, with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1Anaef mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Helios+ PD-1+ CD4+ T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1Anaef is mostly normal in vivo, although CD44 is overexpressed on naïve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1Anaef naïve CD4+ T cells. CD44 expression, CD4+ T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1AnaefMtorchino double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1Anaef T cell dysregulation. DOI: http://dx.doi.org/10.7554/eLife.01020.001
Arthritis & Rheumatism | 2014
Julia I. Ellyard; Rebekka Jerjen; Jaime L. Martin; Adrian Y. S. Lee; Matthew A. Field; Simon H. Jiang; Jean Cappello; Svenja K. Naumann; T. Daniel Andrews; Hamish S. Scott; Marco G. Casarotto; Christopher C. Goodnow; Jeffrey Chaitow; Virginia Pascual; Paul J. Hertzog; Stephen I. Alexander; Matthew C. Cook; Carola G. Vinuesa
Systemic lupus erythematosus (SLE) is a chronic and heterogeneous autoimmune disease. Both twin and sibling studies indicate a strong genetic contribution to lupus, but in the majority of cases the pathogenic variant remains to be identified. The genetic contribution to disease is likely to be greatest in cases with early onset and severe phenotypes. Whole‐exome sequencing now offers the possibility of identifying rare alleles responsible for disease in such cases. This study was undertaken to identify genetic causes of SLE using whole‐exome sequencing.