Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Daniel Crawford is active.

Publication


Featured researches published by T. Daniel Crawford.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2012

Psi4: an open-source ab initio electronic structure program

Justin M. Turney; Andrew C. Simmonett; Robert M. Parrish; Edward G. Hohenstein; Francesco A. Evangelista; Justin T. Fermann; Benjamin Mintz; Lori A. Burns; Jeremiah J. Wilke; Micah L. Abrams; Nicholas J. Russ; Matthew L. Leininger; Curtis L. Janssen; Edward T. Seidl; Wesley D. Allen; Henry F. Schaefer; Rollin A. King; Edward F. Valeev; C. David Sherrill; T. Daniel Crawford

The Psi4 program is a new approach to modern quantum chemistry, encompassing Hartree–Fock and density‐functional theory to configuration interaction and coupled cluster. The program is written entirely in C++ and relies on a new infrastructure that has been designed to permit high‐efficiency computations of both standard and emerging electronic structure methods on conventional and high‐performance parallel computer architectures. Psi4 offers flexible user input built on the Python scripting language that enables both new and experienced users to make full use of the programs capabilities, and even to implement new functionality with moderate effort. To maximize its impact and usefulness, Psi4 is available through an open‐source license to the entire scientific community.


Journal of Computational Chemistry | 2007

PSI3: An open‐source Ab Initio electronic structure package

T. Daniel Crawford; C. David Sherrill; Edward F. Valeev; Justin T. Fermann; Rollin A. King; Matthew L. Leininger; Shawn T. Brown; Curtis L. Janssen; Edward T. Seidl; Joseph P. Kenny; Wesley D. Allen

PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis‐set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file‐system‐sizes), especially multi‐index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree‐Fock, multiconfigurational self‐consistent‐field, second‐order Møller‐Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second‐order perturbation theory; coupled cluster frequency‐dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born‐Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open‐source, GNU General Public License.


Journal of Chemical Physics | 1993

The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities

J. Russell Thomas; George Vacek; T. Daniel Crawford; Yukio Yamaguchi; Henry F. Schaefer

Analytic gradient methods have been used to predict the equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared (IR) intensities of HCN, HNC, CO2, CH4, NH4+, HCCH, H2O, H2CO, NH3, and FCCH at the self‐consistent‐field (SCF), the single and double excitations configuration interaction (CISD), the single and double excitations coupled‐cluster (CCSD), and the single, double, and perturbative triple excitations coupled‐cluster [CCSD(T)] levels of theory. All studies were performed using a triple zeta plus double polarization (TZ2P) basis set and a TZ2P basis set augmented with one set of higher angular momentum functions [TZ (2df,2pd)]. The predicted equilibrium geometries, dipole moments, harmonic vibrational frequencies, and IR intensities were compared to available experimental values. The geometries were predicted accurately at the highest levels of theory. Most of the dipole moments were found to agree favorably with experiment. With the TZ2P basis set, the average absolute...


Journal of Chemical Physics | 2006

Sources of error in electronic structure calculations on small chemical systems

David Feller; Kirk A. Peterson; T. Daniel Crawford

The sources of error in electronic structure calculations arising from the truncation of the one-particle and n-particle expansions are examined with very large correlation consistent basis sets, in some cases up through valence 10-zeta quality, and coupled cluster methods, up through connected quadruple excitations. A limited number of full configuration interaction corrections are also considered. For cases where full configuration interaction calculations were unavailable or prohibitively expensive, a continued fraction approximation was used. In addition, errors arising from corevalence and relativistic corrections are also probed for a number of small chemical systems. The accuracies of several formulas for estimating total energies and atomization energies in the complete basis set limit are compared in light of the present large basis set findings. In agreement with previous work, the CCSD(T) method is found to provide results that are closer to the CCSDTQ and full configuration-interaction results than the less approximate CCSDT method.


Journal of Chemical Physics | 1997

Hartree-Fock orbital instability envelopes in highly correlated single- reference wave functions

T. Daniel Crawford; John F. Stanton; Wesley D. Allen; Henry F. Schaefer

The effects of Hartree–Fock orbital instabilities on force constant predictions at both Hartree–Fock and correlated levels of theory are investigated. Due to the quadratic dependence of the second derivative of correlated energies on the orbital rotation parameters, anomalous force constant singularities enveloped by “instability volcanoes” are given by the single-reference correlation methods examined here. Infinite-order coupled-cluster methods are indeed affected by the reference instability, but over a rather small region of the potential surface, whereas perturbative triples corrections tend to widen the coupled-cluster volcano. Finite-order many-body perturbation theory yields very wide volcanoes, and corresponding predictions of vibrational spectra may be seriously compromised if the geometry of interest lies at all in the vicinity of an instability in the reference determinant.


Journal of Chemical Physics | 2001

Problematic p-benzyne: Orbital instabilities, biradical character, and broken symmetry

T. Daniel Crawford; Elfi Kraka; John F. Stanton; Dieter Cremer

The equilibrium geometry, harmonic vibrational frequencies, and infrared transition intensities of p-benzyne were calculated at the MBPT(2), SDQ-MBPT(4), CCSD, and CCSD(T) levels of theory using different reference wave functions obtained from restricted and unrestricted Hartree-Fock (RHF and UHF), restricted Brueckner (RB) orbital, and Generalized Valence Bond (GVB) theory. RHF erroneously describes p-benzyne as a closed-shell singlet rather than a singlet biradical, which leads to orbital near-instabilities in connection with the mixing of orbital pairs b1u-ag (HOMO–LUMO), b2g-ag (HOMO-1-LUMO), and b1g-ag (HOMO-2-LUMO). Vibrational modes of the corresponding symmetries cause method-dependent anomalous increases (unreasonable force constants and infrared intensities) or decreases in the energy (breaking of the D2h symmetry of the molecular framework of p-benzyne). This basic failure of the RHF starting function is reduced by adding dynamic electron correlation. However RHF-MBPT(2), RHF-SDQ-MBPT(4), RHF-C...


Journal of Chemical Physics | 2004

Coupled cluster calculations of optical rotatory dispersion of (S)-methyloxirane

Mary C. Tam; Nicholas J. Russ; T. Daniel Crawford

Coupled cluster (CC) and density-functional theory (DFT) calculations of optical rotation, [alpha](lambda), have been carried out for the difficult case of (S)-methyloxirane for comparison to recently published gas-phase cavity ringdown polarimetry data. Both theoretical methods are exquisitely sensitive to the choice of one-electron basis set, and diffuse functions have a particularly large impact on the computed values of [alpha](lambda). Furthermore, both methods show a surprising sensitivity to the choice of optimized geometry, with [alpha](355) values varying by as much as 15 deg dm(-1) (g/mL)(-1) among molecular structures that differ only negligibly. Although at first glance the DFT/B3LYP values of [alpha](355) appear to be superior to those from CC theory, the success of DFT in this case appears to stem from a significant underestimation of the lowest (Rydberg) excitation energy in methyloxirane, resulting in a shift of the first-order pole in [alpha](lambda) (the Cotton effect) towards the experimentally chosen incident radiation lines. This leads to a fortuitous positive shift in the value of [alpha](355) towards the experimental result. The coupled cluster singles and doubles model, on the other hand, correctly predicts the position of the absorption pole (to within 0.05 eV of the experimental result), but fails to describe correctly the shape/curvature of the ORD region lambda=355, resulting in an incorrect prediction of both the magnitude and the sign of the optical rotation.


Journal of Physical Chemistry A | 2008

Comparison of Time-Dependent Density-Functional Theory and Coupled Cluster Theory for the Calculation of the Optical Rotations of Chiral Molecules

T. Daniel Crawford; Philip J. Stephens

A comparison of the abilities of time-dependent density-functional theory (TDDFT) and coupled cluster (CC) theory to reproduce experimental sodium D-line specific rotations for 13 conformationally rigid organic molecules is reported. The test set includes alkanes, alkenes, and ketones with known absolute configurations. TDDFT calculations make use of gauge-including atomic orbitals and give origin-independent specific rotations. CC rotations are computed using both the origin-independent dipole-velocity and origin-dependent dipole-length representations. The mean absolute deviations of calculated and experimental rotations are of comparable magnitudes for all three methods. The origin-independent DFT and CC methods give the same sign of [alpha]D for every molecule except norbornanone. For every large-rotation ketone and alkene for which DFT and CC yield the incorrect sign as compared to liquid-phase experimental data, the corresponding optical rotatory dispersion (ORD) curve is bisignate, suggesting that the two models cannot reliably reproduce the relative excitation energies and antagonistic rotational strengths of multiple competing electronic states that contribute to the total long-wavelength rotation. Several potential sources of error in the theoretical treatments are considered, including basis set incompleteness, vibrational and temperature effects, electron correlation, and solvent effects.


Journal of Chemical Physics | 2011

The trans-HOCO radical: Quartic force fields, vibrational frequencies, and spectroscopic constants

Ryan C. Fortenberry; Xinchuan Huang; Joseph S. Francisco; T. Daniel Crawford; Timothy J. Lee

In the search for a full mechanism creating CO(2) from OH + CO, it has been suggested that creation of the hydroxyformyl or HOCO radical may be a necessary step. This reaction and its transient intermediate may also be responsible for the regeneration of CO(2) in such high quantities in the atmosphere of Mars. Past spectroscopic observations of this radical have been limited and a full gas phase set of the fundamental vibrational frequencies of the HOCO radical has not been reported. Using established, highly accurate quantum chemical coupled cluster techniques and quartic force fields, we are able to compute all six fundamental vibrational frequencies and other spectroscopic constants for trans-HOCO in the gas phase. These methods have yielded rotational constants that are within 0.01 cm(-1) for A(0) and 10(-4) cm(-1) for B(0) and C(0) compared with experiment as well as fundamental vibrational frequencies within 4 cm(-1) of the known gas phase experimental ν(1) and ν(2) modes. Such results lead us to conclude that our prediction of the other four fundamental modes of trans-HOCO are also quite reliable for comparison to future experimental observation, though the discrepancy for the torsional mode may be larger since it is fairly anharmonic. With the upcoming European Space Agency/NASA ExoMars Trace Gas Orbiter, these data may help to establish whether HOCO is present in the Martian sky and what role it may play in the retention of a CO(2)-rich atmosphere. Furthermore, these data may also help to clear up questions built around the fundamental chemical process of how exactly the OH + CO reaction progresses.


Chemical Physics Letters | 2002

Locally correlated equation-of-motion coupled cluster theory for the excited states of large molecules

T. Daniel Crawford; Rollin A. King

We report an extension of the local correlation concept to electronically excited states via the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) method. We apply the same orbital domain structure used successfully for ground-state CCSD by Werner and co-workers and find that the resulting localized excitation energies are in error generally by less than 0.2 eV relative to their canonical EOM-CCSD counterparts, provided the basis set is flexible and includes Rydberg-like functions. In addition, we account for weak-pair contributions efficiently using a correction to local-EOM-CCSD transition energies based on the perturbative (D) correction used with configuration interaction singles (CIS).

Collaboration


Dive into the T. Daniel Crawford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. David Sherrill

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin T. Fermann

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge