Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. David Harris is active.

Publication


Featured researches published by T. David Harris.


Journal of the American Chemical Society | 2010

Slow magnetic relaxation in a high-spin iron(II) complex.

Danna E. Freedman; W. Hill Harman; T. David Harris; Gary J. Long; Christopher J. Chang; Jeffrey R. Long

Slow magnetic relaxation is observed for [(tpa(Mes))Fe](-), a trigonal pyramidal complex of high-spin iron(II), providing the first example of a mononuclear transition metal complex that behaves as a single-molecule magnet. Dc magnetic susceptibility and magnetization measurements reveal a strong uniaxial magnetic anisotropy (D = -39.6 cm(-1)) acting on the S = 2 ground state of the molecule. Ac magnetic susceptibility measurements indicate the absence of slow relaxation under zero applied dc field as a result of quantum tunneling of the magnetization. Application of a 1500 Oe dc field initiates slow magnetic relaxation, which follows a thermally activated tunneling mechanism at high temperature to give an effective spin-reversal barrier of U(eff) = 42 cm(-1) and follows a temperature-independent tunneling mechanism at low temperature. In addition, the magnetic relaxation time shows a pronounced dc-field dependence, with a maximum occurring at approximately 1500 Oe.


Journal of the American Chemical Society | 2010

Slow Magnetic Relaxation in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes

W. Hill Harman; T. David Harris; Danna E. Freedman; Henry Fong; Alicia Chang; Jeffrey D. Rinehart; Andrew Ozarowski; Moulay Tahar Sougrati; Fernande Grandjean; Gary J. Long; Jeffrey R. Long; Christopher J. Chang

We present a family of trigonal pyramidal iron(II) complexes supported by tris(pyrrolyl-α-methyl)amine ligands of the general formula [M(solv)(n)][(tpa(R))Fe] (M = Na, R = tert-butyl (1), phenyl (4); M = K, R = mesityl (2), 2,4,6-triisopropylphenyl (3), 2,6-difluorophenyl (5)) and their characterization by X-ray crystallography, Mössbauer spectroscopy, and high-field EPR spectroscopy. Expanding on the discovery of slow magnetic relaxation in the recently reported mesityl derivative 2, this homologous series of high-spin iron(II) complexes enables an initial probe of how the ligand field influences the static and dynamic magnetic behavior. Magnetization experiments reveal large, uniaxial zero-field splitting parameters of D = -48, -44, -30, -26, and -6.2 cm(-1) for 1-5, respectively, demonstrating that the strength of axial magnetic anisotropy scales with increasing ligand field strength at the iron(II) center. In the case of 2,6-difluorophenyl substituted 5, high-field EPR experiments provide an independent determination of the zero-field splitting parameter (D = -4.397(9) cm(-1)) that is in reasonable agreement with that obtained from fits to magnetization data. Ac magnetic susceptibility measurements indicate field-dependent, thermally activated spin reversal barriers in complexes 1, 2, and 4 of U(eff) = 65, 42, and 25 cm(-1), respectively, with the barrier of 1 constituting the highest relaxation barrier yet observed for a mononuclear transition metal complex. In addition, in the case of 1, the large range of temperatures in which slow relaxation is observed has enabled us to fit the entire Arrhenius curve simultaneously to three distinct relaxation processes. Finally, zero-field Mössbauer spectra collected for 1 and 4 also reveal the presence of slow magnetic relaxation, with two independent relaxation barriers in 4 corresponding to the barrier obtained from ac susceptibility data and to the 3D energy gap between the M(S) = ±2 and ±1 levels, respectively.


Journal of the American Chemical Society | 2010

[ReCl4(CN)2]2-: A High Magnetic Anisotropy Building Unit Giving Rise to the Single-Chain Magnets (DMF)4MReCl4(CN)2 (M = Mn, Fe, Co, Ni)

T. David Harris; Miriam V. Bennett; Rodolphe Clérac; Jeffrey R. Long

An S = 3/2, high-anisotropy building unit, trans-[ReCl(4)(CN)(2)](2-), representing the first paramagnetic complex with a mixture of just cyanide and halide ligands, has been synthesized through the reaction of (Bu(4)N)CN with ReCl(4)(THF)(2). This species is characterized in detail and employed in directing the formation of a series of one-dimensional coordination solids of formula (DMF)(4)MReCl(4)(CN)(2) (M = Mn (2), Fe (3), Co (4), Ni (5)). Variable-temperature dc magnetic susceptibility measurements demonstrate the presence of intrachain antiferromagnetic (2) and ferromagnetic (3-5) exchange coupling within these solids. In addition, probing the ac magnetic susceptibility as a function of both temperature and frequency reveals that all of the chain compounds exhibit slow relaxation of the magnetization. The relaxation time is shown to be thermally activated, with energy barriers to relaxation of Delta(tau) = 31, 56, 17, and 20 cm(-1) for 2-5, respectively. Notably, the field-dependent magnetization of the iron congener exhibits a significant hysteresis effect at low temperature, with a coercive field of H(C) = 1.0 T, thus demonstrating magnetlike behavior in this one-dimensional system. Finally, the magnetization dynamics of all solids occur within the finite-size regime, where the magnetic domain growth is limited due to physical defects along the chains within the crystals.


Journal of the American Chemical Society | 2012

Slow Magnetic Relaxation Induced by a Large Transverse Zero-Field Splitting in a MnIIReIV(CN)2 Single-Chain Magnet

Xiaowen Feng; Junjie Liu; T. David Harris; Stephen Hill; Jeffrey R. Long

The model compounds (NBu(4))(2)[ReCl(4)(CN)(2)] (1), (DMF)(4)ZnReCl(4)(CN)(2) (2), and [(PY5Me(2))(2)Mn(2)ReCl(4)(CN)(2)](PF(6))(2) (3) have been synthesized to probe the origin of the magnetic anisotropy barrier in the one-dimensional coordination solid (DMF)(4)MnReCl(4)(CN)(2) (4). High-field electron paramagnetic resonance spectroscopy reveals the presence of an easy-plane anisotropy (D > 0) with a significant transverse component, E, in compounds 1-3. These findings indicate that the onset of one-dimensional spin correlations within the chain compound 4 leads to a suppression of quantum tunneling of the magnetization within the easy plane, resulting in magnetic bistability and slow relaxation behavior. Within this picture, it is the transverse E term associated with the Re(IV) centers that determines the easy axis and the anisotropy energy scale associated with the relaxation barrier. The results demonstrate for the first time that slow magnetic relaxation can be achieved through optimization of the transverse anisotropy associated with magnetic ions that possess easy-plane anisotropy, thus providing a new direction in the design of single-molecule and single-chain magnets.


Inorganic Chemistry | 2009

Magnetic Exchange Coupling in Actinide-Containing Molecules

Jeffrey D. Rinehart; T. David Harris; Stosh A. Kozimor; Bart M. Bartlett; Jeffrey R. Long

Recent progress in the assembly of actinide-containing coordination clusters has generated systems in which the first glimpses of magnetic exchange coupling can be recognized. Such systems are of interest owing to the prospects for involving 5f electrons in stronger magnetic exchange than has been observed for electrons in the more contracted 4f orbitals of the lanthanide elements. Here, we survey the actinide-containing molecules thought to exhibit magnetic exchange interactions, including multiuranium, uranium-lanthanide, uranium-transition metal, and uranium-radical species. Interpretation of the magnetic susceptibility data for compounds of this type is complicated by the combination of spin-orbit coupling and ligand-field effects arising for actinide ions. Nevertheless, for systems where analogues featuring diamagnetic replacement components for the non-actinide spin centers can be synthesized, a data subtraction approach can be utilized to probe the presence of exchange coupling. In addition, methods have been developed for employing the resulting data to estimate lower and upper bounds for the exchange constant. Emphasis is placed on evaluation of the linear clusters (cyclam)M[(mu-Cl)U(Me(2)Pz)(4)](2) (M = Co, Ni, Cu, Zn; cyclam = 1,4,8,11-tetraazacyclotetradecane; Me(2)Pz(-) = 3,5-dimethylpyrazolate), for which strong ferromagnetic exchange with 15 cm(-1) < or = J < or = 48 cm(-1) is observed for the Co(II)-containing species. Owing to the modular synthetic approach employed, this system in particular offers numerous opportunities for adjusting the strength of the magnetic exchange coupling and the total number of unpaired electrons. To this end, the prospects of such modularity are discussed through the lens of several new related clusters. Ultimately, it is hoped that this research will be of utility in the development of electronic structure models that successfully describe the magnetic behavior of actinide compounds and will perhaps even lead to new actinide-based single-molecule magnets.


Journal of the American Chemical Society | 2011

Spin Crossover in a Four-Coordinate Iron(II) Complex

T. David Harris; Carola S. Vogel; Jörg Sutter; Karsten Meyer; Jeremy M. Smith

The four-coordinate iron(II) phosphoraniminato complex PhB(MesIm)(3)Fe-N═PPh(3) undergoes an S = 0 to S = 2 spin transition with T(C) = 81 K, as determined by variable-temperature magnetic measurements and Mössbauer spectroscopy. Variable-temperature single-crystal X-ray diffraction revealed that the S = 0 to S = 2 transition is associated with an increase in the Fe-C and Fe-N bond distances and a decrease in the N-P bond distance. These structural changes have been interpreted in terms of electronic structure theory.


Chemical Communications | 2009

A four-shell, 136-metal 3d-4f heterometallic cluster approximating a rectangular parallelepiped

Xiang-Jian Kong; La-Sheng Long; Rong-Bin Huang; Lan-Sun Zheng; T. David Harris; Zhiping Zheng

A nanosized heterometallic cluster containing 60 La(III) and 76 Ni(II) ions, which are arranged into a four-shell, nest-like framework structure, was obtained by the hydrolytic reaction of the mixed La(NO(3))(3)-Ni(NO(3))(2) system using iminodiacetate as an ancillary ligand to control the hydrolysis.


Journal of the American Chemical Society | 2011

Record Ferromagnetic Exchange through Cyanide and Elucidation of the Magnetic Phase Diagram for a CuIIReIV(CN)2 Chain Compound

T. David Harris; Claude Coulon; Rodolphe Clérac; Jeffrey R. Long

Reaction of the high-magnetic anisotropy building unit [ReCl(4)(CN)(2)](2-) with [Cu(MeCN)(6)](2+) and hydrotris(pyrazol-1-yl)borate (Tp(-)) affords the zigzag chain compound (Bu(4)N)[TpCuReCl(4)(CN)(2)]. Dc magnetic susceptibility measurements reveal the presence of ferromagnetic exchange coupling between Re(IV) and Cu(II) centers along each chain and a fit to the data gives an exchange constant of J/k(B) = +41 K (+29 cm(-1)), representing the strongest ferromagnetic coupling yet observed through cyanide. Below 11.4 K and at applied fields of less than 3600 Oe, the compound undergoes a phase transition to an antiferromagnetic ground state, stemming from weak π-π interchain interactions of strength J(⊥)/k(B) = -1.7 K (-1.2 cm(-1)). This metamagnetic behavior is fully elucidated using both experimental and theoretical methods. In addition, theoretical modeling provides a detailed determination of the local anisotropy tensors corresponding to the [ReCl(4)(CN)(2)](2-) units and demonstrates that the zigzag arrangement of the Re(IV) centers significantly reduces the effective anisotropy of the chain. These results demonstrate the utility of the Re(IV)-CN-Cu(II) linkage and the importance of anisotropic spin orientation in designing strongly coupled systems, which will aid in both the realization of single-chain magnets with higher relaxation barriers and in the construction of high-dimensional cyano-bridged materials exhibiting higher ordering temperatures.


Chemical Science | 2011

Influence of structure on exchange strength and relaxation barrier in a series of FeIIReIV(CN)2 single-chain magnets

Xiaowen Feng; T. David Harris; Jeffrey R. Long

Cyano-bridged single-chain magnets of the type L4FeReCl4(CN)2, where L = diethylformamide (DEF) (1), dibutylformamide (DBF) (2), dimethylformamide (DMF) (3), dimethylbutyramide (DMB) (4), dimethylpropionamide (DMP) (5), and diethylacetamide (DEA) (6), have been synthesized to enable a systematic study of the influence of structural perturbations on magnetic exchange and relaxation barrier. Across the series, varying the amide ligand leads to Fe–N–C bond angles ranging from 154.703(7)° in 1 to 180° in 6. Variable-temperature dc magnetic susceptibility data indicate ferromagnetic exchange coupling in all compounds, with the strength of exchange increasing linearly, from J = +4.2(2) cm−1 to +7.2(3) cm−1, with increasing Fe–N–C bond angle. Ac magnetic susceptibility data collected as a function of frequency reveal that the relaxation barrier of the chain compounds rises steeply with increasing exchange strength, from 45 cm−1 to 93 cm−1. This examination demonstrates that subtle tuning of orbital overlap, and thus exchange strength, can engender dramatic changes in the relaxation barrier. Indeed, the perfectly linear Fe–N–C bond angle in 6 leads to one of the highest barriers and coercive fields yet observed for a single-chain magnet.


Chemical Communications | 2010

Reversible luminescent reaction of amines with copper(I) cyanide

Amanda N. Ley; Lars E. Dunaway; Timothy P. Brewster; Matthew D. Dembo; T. David Harris; François Baril-Robert; Xiaobo Li; Howard H. Patterson; Robert D. Pike

Copper(i) cyanide exposed to various liquid or vapor-phase amines (L) at ambient temperature produces a variety of visible photoluminescence colors via reversible formation of amine adducts. The adducts show phase matches to authentic (CuCN)L(n), n = 0.75-2.0, produced by heating CuCN with liquid amine.

Collaboration


Dive into the T. David Harris's collaboration.

Top Co-Authors

Avatar

Jeffrey R. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ie Rang Jeon

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary J. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kang Du

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Rodolphe Clérac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge