T. Dolch
Hillsdale College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Dolch.
The Astrophysical Journal | 2016
Zaven Arzoumanian; A. Brazier; S. Burke-Spolaor; S. J. Chamberlin; S. Chatterjee; B. Christy; J. M. Cordes; Neil J. Cornish; K. Crowter; Paul Demorest; X. Deng; T. Dolch; Justin Ellis; R. D. Ferdman; E. Fonseca; N. Garver-Daniels; M. E. Gonzalez; F. A. Jenet; Glenn Jones; M. L. Jones; V. M. Kaspi; M. Koop; M. T. Lam; T. J. W. Lazio; Lina Levin; Andrea N. Lommen; D. R. Lorimer; J. Luo; R. S. Lynch; D. R. Madison
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr^(−1) for a GWB from supermassive black hole binaries of A_(gw) < 1.5 x 10^(-15). We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, Ω_(gw)(f)h^2 < 4.2 x 10^(-10). Our limit on the cosmic string GWB, Ω_(gw)(f)h^2 < 2.2 x 10^(-10), translates to a conservative limit on the cosmic string tension with Gµ < 3.3 x 10^(-8), a factor of four better than the joint Planck and high-l cosmic microwave background data from other experiments.
The Astrophysical Journal | 2014
Zaven Arzoumanian; A. Brazier; S. Burke-Spolaor; S. J. Chamberlin; S. Chatterjee; J. M. Cordes; Paul Demorest; X. Deng; T. Dolch; J. A. Ellis; R. D. Ferdman; N. Garver-Daniels; F. A. Jenet; Glenn Jones; V. M. Kaspi; M. Koop; M. T. Lam; T. J. W. Lazio; Andrea N. Lommen; D. R. Lorimer; J. Luo; Ryan S. Lynch; D. R. Madison; M. A. McLaughlin; Sean T. McWilliams; David J. Nice; Nipuni Palliyaguru; T. T. Pennucci; Scott M. Ransom; Alberto Sesana
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of
The Astrophysical Journal | 2015
Weiwei Zhu; I. H. Stairs; Paul Demorest; David J. Nice; Justin Ellis; Scott M. Ransom; Zaven Arzoumanian; K. Crowter; T. Dolch; R. D. Ferdman; E. Fonseca; M. E. Gonzalez; Glenn Jones; M. L. Jones; M. T. Lam; Lina Levin; M. A. McLaughlin; T. T. Pennucci; K. Stovall; J. K. Swiggum
h_0\lesssim 3.8\times 10^{-14}
The Astrophysical Journal | 2014
T. Dolch; M. T. Lam; J. M. Cordes; S. Chatterjee; C. G. Bassa; Bhaswati Bhattacharyya; D. J. Champion; I. Cognard; K. Crowter; Paul Demorest; J. W. T. Hessels; G. H. Janssen; Fredrick A. Jenet; Glenn Jones; C. A. Jordan; R. Karuppusamy; M. J. Keith; V. I. Kondratiev; M. Kramer; P. Lazarus; T. J. W. Lazio; K. J. Lee; M. A. McLaughlin; J. Roy; R. M. Shannon; I. H. Stairs; K. Stovall; J. P. W. Verbiest; D. R. Madison; Nipuni Palliyaguru
at a frequency of 10 nHz. Furthermore, we place 95% \emph{all sky} lower limits on the luminosity distance to such gravitational wave sources finding that the
Monthly Notices of the Royal Astronomical Society | 2016
L. Lentati; R. M. Shannon; W. A. Coles; J. P. W. Verbiest; R. van Haasteren; Justin Ellis; R. N. Caballero; R. N. Manchester; Zaven Arzoumanian; S. Babak; C. G. Bassa; N. D. R. Bhat; P. Brem; M. Burgay; S. Burke-Spolaor; D. J. Champion; S. Chatterjee; I. Cognard; J. M. Cordes; S. Dai; Paul Demorest; G. Desvignes; T. Dolch; R. D. Ferdman; E. Fonseca; Jonathan R. Gair; M. E. Gonzalez; E. Graikou; L. Guillemot; J. W. T. Hessels
d_L \gtrsim 425
Nature Communications | 2015
Ketron Mitchell-Wynne; A. Cooray; Yan Gong; Matthew L. N. Ashby; T. Dolch; Henry C. Ferguson; Steven L. Finkelstein; Norman A. Grogin; Dale D. Kocevski; Anton M. Koekemoer; Joel R. Primack; Joseph Smidt
Mpc for sources at a frequency of 10 nHz and chirp mass
The Astrophysical Journal | 2016
Allison M. Matthews; David J. Nice; E. Fonseca; Zaven Arzoumanian; K. Crowter; Paul Demorest; T. Dolch; Justin Ellis; R. D. Ferdman; M. E. Gonzalez; Glenn Jones; M. L. Jones; M. T. Lam; Lina Levin; M. A. McLaughlin; Timothy T. Pennucci; Scott M. Ransom; I. H. Stairs; K. Stovall; J. K. Swiggum; W. W. Zhu
10^{10}{\rm M}_{\odot}
The Astrophysical Journal | 2018
Zaven Arzoumanian; P. T. Baker; A. Brazier; S. Burke-Spolaor; S. J. Chamberlin; S. Chatterjee; B. Christy; J. M. Cordes; Neil J. Cornish; F. Crawford; H. Thankful Cromartie; K. Crowter; Megan E. DeCesar; Paul Demorest; T. Dolch; Justin Ellis; R. D. Ferdman; E. C. Ferrara; W. M. Folkner; E. Fonseca; N. Garver-Daniels; Peter A. Gentile; Roland Haas; J. S. Hazboun; E. A. Huerta; K. Islo; Glenn Jones; M. L. Jones; David L. Kaplan; V. M. Kaspi
. We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of
The Astrophysical Journal | 2015
M. T. Lam; J. M. Cordes; S. Chatterjee; T. Dolch
\sim
Astrophysical Journal Supplement Series | 2018
Zaven Arzoumanian; A. Brazier; S. Burke-Spolaor; S. J. Chamberlin; Shami Chatterjee; B. Christy; James M. Cordes; Neil J. Cornish; F. Crawford; H. Thankful Cromartie; K. Crowter; Megan E. DeCesar; Paul Demorest; T. Dolch; Justin Ellis; R. D. Ferdman; Elizabeth C. Ferrara; Emmanuel Fonseca; N. Garver-Daniels; Peter A. Gentile; Daniel Halmrast; E. A. Huerta; Fredrick A. Jenet; Cody Jessup; Glenn Jones; M. L. Jones; David L. Kaplan; M. T. Lam; T. Joseph W. Lazio; Lina Levin
4 over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of timevariable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h0 � 3.0 × 10 −14 at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that dL � 425 Mpc for sources at a frequency of 10 nHz and chirp mass 10 10 M� . We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of ∼four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.