Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T.E. Evans is active.

Publication


Featured researches published by T.E. Evans.


Physics of Plasmas | 2003

Transport by intermittency in the boundary of the DIII-D tokamak

J.A. Boedo; D.L. Rudakov; R.A. Moyer; G.R. McKee; R.J. Colchin; Michael J. Schaffer; P.G. Stangeby; W.P. West; S.L. Allen; T.E. Evans; R. J. Fonck; E.M. Hollmann; S. I. Krasheninnikov; A.W. Leonard; W. M. Nevins; M.A. Mahdavi; G.D. Porter; G. R. Tynan; D.G. Whyte; X.-Q. Xu

A271 TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK. Intermittent plasma objectives (IPOs) featuring higher pressure than the surrounding plasma, are responsible for {approx} 50% of the E x B{sub T} radial transport in the scrape off layer (SOL) of the DIII-D tokamak in L- and H-mode discharges. Conditional averaging reveals that the IPOs are positively charged and feature internal poloidal electric fields of up to 4000 V/m. The IPOs move radially with E x B{sub T}/B{sup 2} velocities of {approx} 2600 m/s near the last closed flux surface (LCFS), and {approx} 330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The skewness (i.e. asymmetry of fluctuations from the average) of probe and beam emission spectroscopy (BES) data indicate IPO formation at or near the LCFS and the existence of positive and negative IPOs which move in opposite directions. The particle content of the IPOs at the LCFS is linearly dependent on the local density and decays over {approx} 3 cm into the SOL while their temperature decays much faster ({approx} 1 cm).


Nuclear Fusion | 2009

Principal physics developments evaluated in the ITER design review

R.J. Hawryluk; D.J. Campbell; G. Janeschitz; P.R. Thomas; R. Albanese; R. Ambrosino; C. Bachmann; L. R. Baylor; M. Becoulet; I. Benfatto; J. Bialek; Allen H. Boozer; A. Brooks; R.V. Budny; T.A. Casper; M. Cavinato; J.-J. Cordier; V. Chuyanov; E. J. Doyle; T.E. Evans; G. Federici; M.E. Fenstermacher; H. Fujieda; K. Gál; A. M. Garofalo; L. Garzotti; D.A. Gates; Y. Gribov; P. Heitzenroeder; T. C. Hender

As part of the ITER Design Review and in response to the issues identified by the Science and Technology Advisory Committee, the ITER physics requirements were reviewed and as appropriate updated. The focus of this paper will be on recent work affecting the ITER design with special emphasis on topics affecting near-term procurement arrangements. This paper will describe results on: design sensitivity studies, poloidal field coil requirements, vertical stability, effect of toroidal field ripple on thermal confinement, material choice and heat load requirements for plasma-facing components, edge localized modes control, resistive wall mode control, disruptions and disruption mitigation.


Nuclear Fusion | 2014

Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation

A. Loarte; G. T. A. Huijsmans; S. Futatani; L. R. Baylor; T.E. Evans; D. M. Orlov; O. Schmitz; M. Becoulet; P. Cahyna; Y. Gribov; A. Kavin; A. Sashala Naik; D.J. Campbell; T. Casper; E. Daly; H. Frerichs; A. Kischner; R. Laengner; S. Lisgo; R.A. Pitts; G. Saibene; A. Wingen

Progress in the definition of the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER is described. Evaluation of the power fluxes for low plasma current H-modes in ITER shows that uncontrolled ELMs will not lead to damage to the tungsten (W) divertor target, unlike for high-current H-modes in which divertor damage by uncontrolled ELMs is expected. Despite the lack of divertor damage at lower currents, ELM control is found to be required in ITER under these conditions to prevent an excessive contamination of the plasma by W, which could eventually lead to an increased disruptivity. Modelling with the non-linear MHD code JOREK of the physics processes determining the flow of energy from the confined plasma onto the plasma-facing components during ELMs at the ITER scale shows that the relative contribution of conductive and convective losses is intrinsically linked to the magnitude of the ELM energy loss. Modelling of the triggering of ELMs by pellet injection for DIII-D and ITER has identified the minimum pellet size required to trigger ELMs and, from this, the required fuel throughput for the application of this technique to ITER is evaluated and shown to be compatible with the installed fuelling and tritium re-processing capabilities in ITER. The evaluation of the capabilities of the ELM control coil system in ITER for ELM suppression is carried out (in the vacuum approximation) and found to have a factor of ∼2 margin in terms of coil current to achieve its design criterion, although such a margin could be substantially reduced when plasma shielding effects are taken into account. The consequences for the spatial distribution of the power fluxes at the divertor of ELM control by three-dimensional (3D) fields are evaluated and found to lead to substantial toroidal asymmetries in zones of the divertor target away from the separatrix. Therefore, specifications for the rotation of the 3D perturbation applied for ELM control in order to avoid excessive localized erosion of the ITER divertor target are derived. It is shown that a rotation frequency in excess of 1 Hz for the whole toroidally asymmetric divertor power flux pattern is required (corresponding to n Hz frequency in the variation of currents in the coils, where n is the toroidal symmetry of the perturbation applied) in order to avoid unacceptable thermal cycling of the divertor target for the highest power fluxes and worst toroidal power flux asymmetries expected. The possible use of the in-vessel vertical stability coils for ELM control as a back-up to the main ELM control systems in ITER is described and the feasibility of its application to control ELMs in low plasma current H-modes, foreseen for initial ITER operation, is evaluated and found to be viable for plasma currents up to 5–10 MA depending on modelling assumptions.


Nuclear Fusion | 2008

Study of in-vessel nonaxisymmetric ELM suppression coil concepts for ITER

M.J. Schaffer; J. Menard; M.P. Aldan; J. Bialek; T.E. Evans; R.A. Moyer

Large Type-I edge-localized mode (ELM) heat pulses may limit the life of divertor targets in a burning plasma. Recent experiments show that pitch-resonant nonaxisymmetric magnetic perturbations of the plasma edge of 0.0005 or less of the main magnetic field offer a useful solution, but there is little room in the presently designed ITER for even small perturbation coils. We present proposed coil requirements for ITER ELM suppression, derived primarily from DIII-D ELM suppression experiments. We show by calculated examples that large arrays of coils (e.g. four toroidal rows of nine coils each) on the outboard wall near the plasma (at the radius of the blanket-vacuum vessel interface R ~ 8 m) can meet the known requirements, expressed in terms of the toroidal helical Fourier harmonic spectrum, for both low- and high-q ITER plasmas, when coil currents are distributed to concentrate the magnetic perturbation into a single dominant Fourier spectral peak. Fields from arrays of less than four rows of nine coils (a) penetrate relatively more strongly into the core plasma, and (b) generate more and larger nonresonant spectral peaks. Both features are expected to brake desirable plasma rotation. We found that the Moire effect from approximating sinusoidal perturbations by a limited discrete coil set can be used to control nonfundamental harmonics in large arrays. We show that a judicious choice of current distribution among the coils ameliorates effects of an 80° toroidal gap where no coils are allowed in the ITER midplane.


Nuclear Fusion | 2005

Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas

T.E. Evans; R.A. Moyer; J.G. Watkins; T.H. Osborne; P.R. Thomas; M. Becoulet; J.A. Boedo; E. J. Doyle; M.E. Fenstermacher; K.H. Finken; R. J. Groebner; M. Groth; J. H. Harris; G.L. Jackson; R.J. La Haye; C.J. Lasnier; S. Masuzaki; N. Ohyabu; David Pretty; H. Reimerdes; T.L. Rhodes; D.L. Rudakov; M.J. Schaffer; M.R. Wade; G. Wang; W.P. West; L. Zeng

Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τE) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on magnetic field line modelling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ ψN ≤ 1.0) when q95 = 3.7 ± 0.2, creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, βN, H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs (Δt > 4–6 τE) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas, including cases matching the baseline ITER scenario 2 flux surface shape. In low triangularity, lower single null plasmas, with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1–2 τE. Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.


Physics of Plasmas | 2008

Effect of island overlap on edge localized mode suppression by resonant magnetic perturbations in DIII-D

M.E. Fenstermacher; T.E. Evans; T.H. Osborne; M.J. Schaffer; M. P. Aldan; J.S. deGrassie; P. Gohil; I. Joseph; R.A. Moyer; P. B. Snyder; R. J. Groebner; M. Jakubowski; A.W. Leonard; O. Schmitz

Recent DIII-D [J. L. Luxon et al., Nucl. Fusion 43, 1813 (2003)] experiments show a correlation between the extent of overlap of magnetic islands induced in the edge plasma by perturbation coils and complete suppression of Type-I edge localized modes (ELMs) in plasmas with ITER-like electron pedestal collisionality νe*∼0.1, flux surface shape and low edge safety factor (q95≈3.6). With fixed amplitude n=3 resonant magnetic perturbation (RMP), ELM suppression is obtained only in a finite window in the edge safety factor (q95) consistent with maximizing the resonant component of the applied helical field. ELM suppression is obtained over an increasing range of q95 by either increasing the n=3 RMP strength, or by adding n=1 perturbations to “fill in” gaps between islands across the edge plasma. The suppression of Type-I ELMs correlates with a minimum width of the edge region having magnetic islands with Chirikov parameter >1.0, based on vacuum calculations of RMP mode components excluding the plasma response ...


Physics of Plasmas | 2005

Edge Localized Mode Control with an Edge Resonant Magnetic Perturbation

R.A. Moyer; T.E. Evans; T. H. Osborne; P.R. Thomas; M. Becoulet; J. H. Harris; K.H. Finken; J.A. Boedo; E. J. Doyle; M.E. Fenstermacher; P. Gohil; R. J. Groebner; M. Groth; G.L. Jackson; R.J. La Haye; C.J. Lasnier; A.W. Leonard; G.R. McKee; H. Reimerdes; T.L. Rhodes; D.L. Rudakov; M.J. Schaffer; P.B. Snyder; M.R. Wade; G. Wang; J.G. Watkins; W. P. West; L. Zeng

This work was funded by the U.S. Department of Energy under Grant Nos. DE-FC02-04ER54698, DE-FG02- 04ER54758, DE-FG03-01ER54615, W-7405-ENG-48, DEFG03-96ER54373, DE-FG02-89ER53297, DE-AC05- 00OR22725, and DE-AC04-94AL85000.


Journal Name: Journal of Physics Conference Series, vol. 7, N/A, July 1, 2005, pp. 174 | 2005

Experimental Signatures of Homoclinic Tangles in Poloidally Diverted Tokamaks

T.E. Evans; Roland K. W. Roeder; J A Carter; B I Rapoport; M E Fenstermacher; C J Lasnier

Small non-axisymmetric perturbations of poloidally diverted tokamaks create edge stochastic magnetic field lines that connect to material surfaces such as those in the divertors. Separatrix structure calculations show that the distribution of stochastic field lines on the vessel walls is closely related to the topology of homoclinic tangles formed in the perturbed system. Since these tangles prescribe how the stochastic fields are organized, they are of significant practical interest in tokamak experiments. Experimental measurements of heat and particle distributions on plasma facing surfaces sometimes show split peak patterns that are consistent with the presence of stochasticity and homoclinic tangles. These split peaks are often observed during locked modes and other types of edge instabilities. They are also observed when perturbation fields from magnetohydrodynamic control coils are pulsed during a plasma discharge. Numerical modeling of the perturbation field from these control coils shows that the homoclinic tangle produced by a coil pulse is not always large enough to produce the splitting patterns observed. Nevertheless, there is a clear correlation between the coil pulses and the appearance of the split profiles. These results suggest the presence of the plasma amplification mechanism that enhances the size of the non-resonant homoclinic tangles.


Nuclear Fusion | 2013

ELM control strategies and tools: status and potential for ITER

P. T. Lang; A. Loarte; G. Saibene; L. R. Baylor; M. Becoulet; M. Cavinato; S. Clement-Lorenzo; E. Daly; T.E. Evans; M.E. Fenstermacher; Y. Gribov; L. D. Horton; C. Lowry; Y. Martin; O. Neubauer; N. Oyama; Michael J. Schaffer; D. Stork; W. Suttrop; P. Thomas; M. Q. Tran; H. R. Wilson; A. Kavin; O. Schmitz

Operating ITER in the reference inductive scenario at the design values of Ip = 15 MA and QDT = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive magnetohydrodynamic instabilities resulting in edge localized modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components (PFC). Without appropriate control, the heat loads on PFCs during ELMs in ITER are expected to become significant for operation in H-mode at Ip = 6–9 MA; operation at higher plasma currents would result in a very reduced life time of the PFCs. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Small/no ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing effect on large ELMs. Application of edge magnetic field perturbation with non-axisymmetric fields is found to affect transport at the plasma edge and thus prevent the uncontrolled rise of the plasma pressure gradients and the occurrence of type-I ELMs. This paper compiles a brief overview of various ELM control approaches, summarizes their present achievements and briefly discusses the open issues regarding their application in ITER.


Plasma Physics and Controlled Fusion | 2005

ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

K.H. Burrell; T.E. Evans; E. J. Doyle; M.E. Fenstermacher; R. J. Groebner; A.W. Leonard; R.A. Moyer; T.H. Osborne; M.J. Schaffer; P.B. Snyder; P.R. Thomas; W.P. West; J.A. Boedo; A. M. Garofalo; P. Gohil; G.L. Jackson; R.J. La Haye; C.J. Lasnier; H. Reimerdes; T.L. Rhodes; J. T. Scoville; W.M. Solomon; D. M. Thomas; G. Wang; J.G. Watkins; L. Zeng

Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces the edge pressure gradient and pedestal current density below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.

Collaboration


Dive into the T.E. Evans's collaboration.

Top Co-Authors

Avatar

R.A. Moyer

University of California

View shared research outputs
Top Co-Authors

Avatar

M.E. Fenstermacher

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C.J. Lasnier

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.G. Watkins

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

T.H. Osborne

University of California

View shared research outputs
Top Co-Authors

Avatar

O. Schmitz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

M.J. Schaffer

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.G. Whyte

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge