Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T.F. Salvini is active.

Publication


Featured researches published by T.F. Salvini.


Brazilian Journal of Medical and Biological Research | 2004

Effect of passive stretching on the immobilized soleus muscle fiber morphology

E.L. Coutinho; A.R.S. Gomes; C.N. França; J. Oishi; T.F. Salvini

The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a) the left soleus muscle was immobilized in the shortened position for 3 weeks; b) during immobilization, the soleus was stretched for 40 min every 3 days; c) the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A) showed a significant decrease in weight (44 +/- 6%), length (19 +/- 7%), serial sarcomere number (23 +/- 15%), and fiber area (37 +/- 31%) compared to the contralateral muscles (P < 0.05, paired Student t-test). The immobilized and stretched soleus (group B) showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 +/- 40 vs 37 +/- 31%, respectively; P < 0.001, ANOVA test). Muscles submitted only to stretching (group C) significantly increased the length (5 +/- 2%), serial sarcomere number (4 +/- 4%), and fiber area (16 +/- 44%) compared to the contralateral muscles (P < 0.05, paired Student t-test). In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.


Lasers in Medical Science | 2001

Dose-dependency of Low-energy HeNe Laser Effect in Regeneration of Skeletal Muscle in Mice

André Amaral; Nivaldo Antonio Parizotto; T.F. Salvini

Abstract. We evaluated the effect on mice skeletal muscle regeneration of different doses (2.6, 8.4, and 25u2009J/cm2) of HeNe laser (λ 632.8u2009nm; power, 2.6u2009mW; spot size, 0.007u2009cm2) applied directly to intact skin of injured muscle. Muscle injury was induced in both right and left Tibialis anterior (TA) muscles by ACL myotoxin (5u2009mg/kg). Right TA muscles were irradiated daily for 5 days while contralateral muscles received a sham treatment. Only the 2.6u2009J/cm2 dose resulted in changes such as increased mitochondrial density and muscle fibre in the TA muscles as compared to sham groups (3280±704u2009µm2 versus 2110±657u2009µm2, p=0.02). We concluded that the HeNe effect on mouse muscle regeneration is dose-specific: only 2.6u2009J/cm2 increased muscle fibre area and mitochondrial density.


Brazilian Journal of Medical and Biological Research | 2004

Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

A.R.S. Gomes; E.L. Coutinho; C.N. França; J. Polonio; T.F. Salvini

We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 +/- 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 +/- 6%, P = 0.002), in serial sarcomere number (23 +/- 15%) and in cross-sectional area of the fibers (37 +/- 31%, P < 0.001) compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05). Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 +/- 659 vs 2961 +/- 806 microm(2), respectively, P < 0.05). In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.


Brazilian Journal of Medical and Biological Research | 2002

A new model for the immobilization of the rat hind limb

E.L. Coutinho; A.R.S. Gomes; C.N. França; T.F. Salvini

An alternative device for the immobilization of the hind limb of the rat was developed to study the effects of chronic disuse on the soleus and tibialis anterior muscles, maintained for 3 weeks in the shortening and the stretching positions, respectively. The proposed device is made of steel mesh and cotton materials, and has some advantages when compared to cast or plaster cast: it is cheaper, lighter (12 g or 4% of the body weight of the rat) and the same unit can be easily adjusted and used several times in the same animal or in animals of similar size. Immobilization is also useful to restrain the movements of the hip, knee, and ankle joints. Male rats (291 +/- 35 g and aged 14 +/- 2 weeks) were used to develop and test the model. The soleus muscle of 18 rats was maintained in a shortened position for 21 consecutive days and lost 19 +/- 7% of its length (P = 0.008) and 44 +/- 6% of its weight (P = 0.002) compared to the contralateral intact muscle. No difference (P = 0.67) was found in the stretched tibialis anterior of the same hind limb when compared to the contralateral muscle. No ulcer, sore or foot swelling was observed in the animals. Immobilization was effective in producing chronic muscle disuse in the hind limbs of rats and is an acceptable alternative to the traditional methods of immobilization such as cast or plaster cast.


Toxicon | 2001

Systemic skeletal muscle necrosis induced by crotoxin

T.F. Salvini; André Amaral; E.H Miyabara; J.A.O Turri; P.M Danella; H.S Selistre de Araújo

Systemic skeletal muscle necrosis induced by crotoxin, the major component of the venom of Crotalus durissus terrificus, was investigated. Mice received an intramuscular injection of crotoxin (0.35mg/kg body weight) into the right tibialis anterior (TA) muscles, which were evaluated 3h, 24h and 3 days later. Control mice were injected with saline. Right and left TAs, gastrocnemius, soleus and right masseter and longissimus dorsi were removed and frozen. Histological sections were stained with Toluidine Blue or incubated for acidic phosphatase reaction. Three and 24h after the injection, signals of muscle fiber injury were found: (a) in the injected TA muscles; (b) in both right and contralateral soleus and red gastrocnemius; and (c) in the masseter muscles. Contralateral TA, longissimus dorsi and white gastrocnemius muscles were not injured. In conclusion, crotoxin induced a systemic and selective muscle injury in muscles or muscle regions composed by oxidative muscle fibers.


Toxicon | 1998

Injury and recovery of fast and slow skeletal muscle fibers affected by ACL myotoxin isolated from Agkistrodon contortrix laticinctus (Broad-Banded Copperhead) venom

C.C. Morini; E.C.L. Pereira; H.S Selistre de Araújo; Charlotte L. Ownby; T.F. Salvini

The response of different types of skeletal muscle fibers to a snake venom PLA2 myotoxin was tested in vivo by injecting ACL myotoxin (ACLMT) into mice. Both the soleus (slow-twitch) and gastrocnemius (fast-twitch) were examined at different time periods (3 h, 3 and 21 d) after the injection. All animals received 5 mg/kg myotoxin into the subcutaneous lateral region of the right hind limb, near the Achilles tendon; contralateral muscles were used as controls. Cross-sections (10 microm) of frozen muscle tissue were cut from the medial region of the muscle. Alternate serial sections were stained either with toluidine blue or for acid phosphatase, myofibrillar ATPase activity after alkali (pH 10.3) or acid preincubation (pH 4.3), succinate dehydrogenase or acetylcholinesterase. Several stages of necrosis were observed 3 h after ACLMT injection, in both superficial and deep regions of both muscles. In these same regions 3 d after injection, clusters of regenerated muscle fibers were present, and some of them presented AChE activity. Twenty-one days after ACLMT injection the muscle fibers of soleus and gastrocnemius presented only chronic signs of damage such as split fibers and centralized nuclei. Using m-ATPase reactions it was possible to determine that both muscle fiber types I and II were injured in both muscles. The number of type IIC fibers was significantly increased, and the number of type II fibers significantly decreased in the gastrocnemius 21 d after ACLMT injection, suggesting a change in muscle fiber type from type II to type I, through type IIC. The increased number of type IIC fibers and the presence of AChE activity in clusters of regenerating fibers and split fibers indicate that injury by ACLMT produces axonal remodeling and muscle fiber type change.


Brazilian Journal of Medical and Biological Research | 2001

Regenerated rat skeletal muscle after periodic contusions

V.B. Minamoto; S.R. Bunho; T.F. Salvini

In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA) muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8) and four (N = 9) months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 +/- 0.15 vs 0.91 +/- 0.09 g, P = 0.03; four months: 0.79 +/- 0.14 vs 1.02 +/- 0.07 g, P = 0.0007, respectively) and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 +/- 2.1 vs 0.5 +/- 0.3%, P = 0.006; four months: 2.3 +/- 1.6 vs 0.3 +/- 0.3%, P = 0.007, respectively). Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003). Thus, we conclude that: a) muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b) periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c) periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.


Toxicon | 2001

Regeneration and change of muscle fiber types after injury induced by a hemorrhagic fraction isolated from Agkistrodon contortrix laticinctus venom

T.F. Salvini; S.S Belluzzo; H.S Selistre de Araújo

Tibialis anterior (TA) muscles of rats were evaluated 3h, 3 and 30days after intramuscular injection of ACL hemorrhagic toxin I (ACLHT-I, 5mg/kg), partially purified from the venom of Agkistrodon contortrix laticinctus. Contralateral muscles were injected with saline. Three hours after ACLHT-1 injection: presence of hemorrhagic areas and myonecrotic muscle fibers. Three days: injured muscles showed areas in regeneration, some regions with delay of regeneration and bundles of normal fibers. An increased TA muscle weight was found when compared with the contralateral (0.45+/-0.03g versus 0.36+/-0.04g, p=0.04). Thirty days: areas of regenerated muscle fibers presented splits and centralized nuclei. Some regions were replaced by connective tissue. All muscle fiber types were injured but only the incidence of type IIC increased (3.4+/-2.0% versus 0.2+/-0.2%, p=0.0005). Regenerated areas of muscles were exclusively composed by fiber types II and IIC. Regenerated muscles decreased the muscle weight (0.49+/-0.1g versus 0.66+/-0.05g, p=0. 03). In conclusion, ACLHT-I: (a) caused hemorrhage and muscle fiber injury; (b) injured both fiber types I and II; (c) increased the incidence of fiber type IIC and; (d) some muscle regions were replaced by connective tissue.


Brazilian Journal of Medical and Biological Research | 2006

Cyclosporin-A does not affect skeletal muscle mass during disuse and recovery

Marcelo Saldanha Aoki; Elen H. Miyabara; Antonio G. Soares; T.F. Salvini; Anselmo S. Moriscot

Cyclosporin-A (CsA) is an immunosuppressive drug that acts as an inhibitor of calcineurin, a calcium phosphatase that has been suggested to play a role in skeletal muscle hypertrophy. The aim of the present study was to determine the effect of CsA administration (25 mg kg(-1) day(-1)) on skeletal muscle mass and phenotype during disuse and recovery. Male Wistar rats received vehicle (N = 8) or CsA (N = 8) during hind limb immobilization (N = 8) and recovery (N = 8). Muscle weight (dry/wet) and cross-sectional area were evaluated to verify the effect of CsA treatment on muscle mass. Muscle phenotype was assessed by histochemistry of myosin ATPase. CsA administration during immobilization and recovery did not change muscle/body weight ratio in the soleus (SOL) or plantaris (PL). Regarding muscle phenotype, we observed a consistent slow-to-fast shift in all experimental groups (immobilized only, receiving CsA only, and immobilized receiving CsA) as compared to control in both SOL and PL (P < 0.05). During recovery, no difference was observed in SOL or PL fiber type composition between the experimental recovered group and recovered group receiving CsA compared to their respective controls. Considering the muscle/body weight ratio, CsA administration does not maximize muscle mass loss induced by immobilization. Our results also indicate that CsA fails to block skeletal muscle regrowth after disuse. The present data suggest that calcineurin inhibition by CsA modulates muscle phenotype rather than muscle mass.


Toxicon | 2001

Expression of an active recombinant lysine 49 phospholipase A2 myotoxin as a fusion protein in bacteria

C.D. Giuliani; M.R.C. Iemma; A.C.V. Bondioli; Dulce H.F. Souza; L.L Ferreira; André Amaral; T.F. Salvini; Heloisa S. Selistre-de-Araujo

ACL myotoxin (ACLMT) is a K49 phospholipase A(2)-like protein isolated from the venom of the snake Agkistrodon contortrix laticinctus (broad-banded copperhead) that induces necrosis of skeletal muscle. We have previously cloned and sequenced the cDNA coding for ACLMT from a venom gland cDNA library. In order to perform structure and function studies, we have developed an expression system for production of ACLMT as a fusion protein with maltose binding protein (MBP) from the periplasm of bacteria, using the pMAL-p2 expression vector. The cDNA coding for the mature toxin without the signal peptide was amplified by PCR and subcloned into the pMAL-p2 vector. The new plasmid (pMAL-MT) was used to transform BL21(DE3) E. coli cells. Culture of transformed cells induced with IPTG led to the expression of a 60 kDa fusion protein which strongly reacts with anti-native ACLMT antibodies. The fusion protein was purified from the bacterial periplasm by affinity chromatography in an amylose column and by gel filtration. The purified fusion protein (MBP-rACLMT) was able to induce necrosis of skeletal muscle of mice very similar to that caused by the native myotoxin.

Collaboration


Dive into the T.F. Salvini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane Lanatovits Prado

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H.S Selistre de Araújo

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilson A. Mello Junior

Pontifícia Universidade Católica de Campinas

View shared research outputs
Top Co-Authors

Avatar

André Amaral

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

A.R.S. Gomes

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Aparecida Maria Catai

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

C.N. França

Federal University of São Carlos

View shared research outputs
Researchain Logo
Decentralizing Knowledge