T. Frigge
University of Duisburg-Essen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Frigge.
Ultramicroscopy | 2013
A. Hanisch-Blicharski; A. Janzen; B. Krenzer; Simone Wall; F. Klasing; Annika Kalus; T. Frigge; M. Kammler; M. Horn-von Hoegen
Many fundamental processes of structural changes at surfaces occur on a pico- or femtosecond time scale. In order to study such ultra-fast processes, we have combined modern surface science techniques with fs-laser pulses in a pump-probe scheme. Reflection high energy electron diffraction (RHEED) with grazing incident electrons ensures surface sensitivity for the probing electron pulses. Utilizing the Debye-Waller effect, we studied the cooling of vibrational excitations in monolayer adsorbate systems or the nanoscale heat transport from an ultra-thin film through a hetero-interface on the lower ps-time scale. The relaxation dynamics of a driven phase transition far away from thermal equilibrium is demonstrated with the In-induced (8×2) reconstruction on Si(111). This surface exhibits a Peierls-like phase transition at 100K from a (8×2) ground state to (4×1) excited state. Upon excitation by a fs-laser pulse, this structural phase transition is driven into an excited (4×1) state at a sample temperature of 20K. Relaxation into the (8×2) ground state occurs after more than 150 ps.
Nature | 2017
T. Frigge; B. Hafke; T. Witte; B. Krenzer; C. Streubühr; A. Samad Syed; V. Mikšić Trontl; I. Avigo; Ping Zhou; M. Ligges; D. von der Linde; Uwe Bovensiepen; M. Horn-von Hoegen; Stefan Martin Wippermann; A. Lücke; S. Sanna; Uwe Gerstmann; W. G. Schmidt
Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In–In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.
Applied Physics Letters | 2015
T. Frigge; B. Hafke; V. Tinnemann; B. Krenzer; M. Horn-von Hoegen
The thermal transport properties of crystalline nanostructures on Si were studied by ultra-fast surface sensitive time-resolved electron diffraction. Self-organized growth of epitaxial Ge hut, dome, and relaxed clusters was achieved by in-situ deposition of 8 monolayers of Ge on Si(001) at 550 °C under UHV conditions. The thermal response of the three different cluster types subsequent to impulsive heating by fs laser pulses was determined through the Debye-Waller effect. Time resolved spot profile analysis and life-time mapping was employed to distinguish between the thermal response of the different cluster types. While dome clusters are cooling with a time constant of τ = 150 ps, which agrees well with numerical simulations, the smaller hut clusters with a height of 2.3 nm exhibit a cooling time constant of τ = 50 ps, which is a factor of 1.4 slower than expected.
Structural Dynamics | 2015
T. Frigge; B. Hafke; V. Tinnemann; T. Witte; M. Horn-von Hoegen
Ultrafast high energy electron diffraction in reflection geometry is employed to study the structural dynamics of self-organized Germanium hut-, dome-, and relaxed clusters on Si(001) upon femtosecond laser excitation. Utilizing the difference in size and strain state the response of hut- and dome clusters can be distinguished by a transient spot profile analysis. Surface diffraction from {105}-type facets provide exclusive information on hut clusters. A pixel-by-pixel analysis of the dynamics of the entire diffraction pattern gives time constants of 40, 160, and 390 ps, which are assigned to the cooling time constants for hut-, dome-, and relaxed clusters.
Structural Dynamics | 2018
T. Frigge; B. Hafke; T. Witte; B. Krenzer; M. Horn-von Hoegen
The photoinduced structural dynamics of the atomic wire system on the Si(111)-In surface has been studied by ultrafast electron diffraction in reflection geometry. Upon intense fs-laser excitation, this system can be driven in around 1 ps from the insulating (8×2) reconstructed low temperature phase to a metastable metallic (4×1) reconstructed high temperature phase. Subsequent to the structural transition, the surface heats up on a 6 times slower timescale as determined from a transient Debye-Waller analysis of the diffraction spots. From a comparison with the structural response of the high temperature (4×1) phase, we conclude that electron-phonon coupling is responsible for the slow energy transfer from the excited electron system to the lattice. The significant difference in timescales is evidence that the photoinduced structural transition is non-thermally driven.
Semiconductor Science and Technology | 2015
T. Frigge; B. Hafke; V. Tinnemann; T. Witte; B. Krenzer; M Horn-von Hoegen
The thermal transport properties of self-organized Ge nanostructures on Si were studied by means of ultrafast surface sensitive time-resolved electron diffraction. The thermal boundary resistance was determined from the temperature response of the Ge nanostructures upon impulsive heating by fs-laser pulses. The transient temperature was determined through the Debye–Waller effect. Epitaxial growth of Ge hut and dome clusters was achieved by in-situ deposition of 8 monolayers of Ge on Si(001) at 550 °C under ultra-high vacuum conditions. Time-resolved spot profile analysis of different orders of diffraction spots was used to distinguish between the thermal response of hut and dome clusters. Dome clusters of 6 nm height and 50 nm width cool with a time constant of which agrees well with numerical simulations calculated in the framework of the diffuse mismatch model. The much smaller hut clusters with a height of 2.3 nm and width of 23 nm exhibit a cooling time of , which is a factor of 2 slower than predicted by theory.
Applied Physics Letters | 2017
T. Witte; T. Frigge; B. Hafke; B. Krenzer; M. Horn-von Hoegen
We studied the phononic heat transport from ultrathin epitaxial Pb(111) films across the heterointerface into a Si(111) substrate by means of ultrafast electron diffraction. The thickness of the Pb films was varied from 15 to 4 monolayers. It was found that the thermal boundary conductance σTBC of the heterointerface is independent of the film thickness. We have no evidence for finite size effects: the continuum description of heat transport is still valid, even for the thinnest films of only 4 monolayer thickness.
Physical Review B | 2016
B. Hafke; T. Frigge; T. Witte; B. Krenzer; Julian Aulbach; Joerg Schaefer; R. Claessen; Steven C. Erwin; M. Horn-von Hoegen
Physical Review B | 2014
F. Klasing; T. Frigge; B. Hafke; B. Krenzer; Simone Wall; A. Hanisch-Blicharski; M. Horn-von Hoegen
Journal of Materials Research | 2012
A. Hanisch-Blicharski; B. Krenzer; Simone Wall; Annika Kalus; T. Frigge; Michael Horn-von Hoegen